Manganese ferrite nanoparticle-algal cell interaction mechanisms for potential application in microalgae harvesting

Louie A. Lapeñas , Janire Peña-Bahamonde , Hoang Nguyen , Mark Daniel G. de Luna , Debora F. Rodrigues
{"title":"Manganese ferrite nanoparticle-algal cell interaction mechanisms for potential application in microalgae harvesting","authors":"Louie A. Lapeñas ,&nbsp;Janire Peña-Bahamonde ,&nbsp;Hoang Nguyen ,&nbsp;Mark Daniel G. de Luna ,&nbsp;Debora F. Rodrigues","doi":"10.1016/j.clce.2022.100061","DOIUrl":null,"url":null,"abstract":"<div><p>Algal biofuel is a promising green energy for the future, but harvesting algae remains a major challenge. To overcome this obstacle, magnetic separation using magnetic nanoparticles is proposed as a simple, highly efficient yet cost-effective method to collect microalgae. Magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles are the typical materials of choice, but their performance varies depending on the pH of the water, furthermore, they can be toxic to algal cells. Hence, a more stable and non-toxic alternative replacement for Fe<sub>3</sub>O<sub>4</sub> is needed. In this work, we explore the use of biocompatible manganese-containing magnetic ferrite nanoparticles (NPs) to harvest <em>Chlorella sorokiniana</em> and <em>Scenedesmus obliquus</em> microalgae. Using this novel NP, we achieved a harvesting efficiency of roughly 90% for <em>Chlorella sorokiniana</em> and 80% for <em>Scenedesmus obliquus</em> up to three cycles consistently throughout a wide pH range of 2–12. This was due to the high stability and reversible attachment of the NPs to the algal cells. Surface analysis of the NPs-Algae by Fourier transformed infrared (FTIR), the microbial adhesion to hydrocarbons (MATH), zeta potential, and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory indicated acid-base interactions and hydrophobicity effects are the driven forces for NPs-algae interaction instead of simple electrostatic attraction. Overall, our study provided a more efficient magnetic harvesting approach for algae and a more in-depth understanding of the separation mechanisms to improve and advance the algae biofuel industry.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"4 ","pages":"Article 100061"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782322000596/pdfft?md5=dfe6d2bcc7cc6fcdbf9f6124f3d6f590&pid=1-s2.0-S2772782322000596-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782322000596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Algal biofuel is a promising green energy for the future, but harvesting algae remains a major challenge. To overcome this obstacle, magnetic separation using magnetic nanoparticles is proposed as a simple, highly efficient yet cost-effective method to collect microalgae. Magnetite (Fe3O4) nanoparticles are the typical materials of choice, but their performance varies depending on the pH of the water, furthermore, they can be toxic to algal cells. Hence, a more stable and non-toxic alternative replacement for Fe3O4 is needed. In this work, we explore the use of biocompatible manganese-containing magnetic ferrite nanoparticles (NPs) to harvest Chlorella sorokiniana and Scenedesmus obliquus microalgae. Using this novel NP, we achieved a harvesting efficiency of roughly 90% for Chlorella sorokiniana and 80% for Scenedesmus obliquus up to three cycles consistently throughout a wide pH range of 2–12. This was due to the high stability and reversible attachment of the NPs to the algal cells. Surface analysis of the NPs-Algae by Fourier transformed infrared (FTIR), the microbial adhesion to hydrocarbons (MATH), zeta potential, and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory indicated acid-base interactions and hydrophobicity effects are the driven forces for NPs-algae interaction instead of simple electrostatic attraction. Overall, our study provided a more efficient magnetic harvesting approach for algae and a more in-depth understanding of the separation mechanisms to improve and advance the algae biofuel industry.

Abstract Image

纳米铁酸锰-藻细胞相互作用机制在微藻收获中的潜在应用
藻类生物燃料是未来很有前途的绿色能源,但收获藻类仍然是一个主要挑战。为了克服这一障碍,利用磁性纳米颗粒进行磁分离是一种简单、高效、经济的收集微藻的方法。磁铁矿(Fe3O4)纳米颗粒是典型的选择材料,但它们的性能取决于水的pH值,此外,它们可能对藻类细胞有毒。因此,需要一种更稳定、无毒的Fe3O4替代品。在这项工作中,我们探索了使用生物相容性含锰磁性铁氧体纳米颗粒(NPs)来收获小球藻和斜状小球藻。使用这种新型NP,我们在2-12的宽pH范围内连续三个循环,对小球藻(Chlorella sorokiniana)和斜状小球藻(Scenedesmus obliquus)的收获效率分别达到约90%和80%。这是由于NPs在藻类细胞上的高稳定性和可逆附着。利用傅里叶变换红外(FTIR)、微生物对碳氢化合物的粘附力(MATH)、zeta电位和扩展的Derjaguin-Landau-Verwey-Overbeek (XDLVO)理论对nps -藻类进行表面分析表明,酸碱相互作用和疏水效应是nps -藻类相互作用的驱动力,而不是简单的静电吸引。总的来说,我们的研究为藻类提供了一种更有效的磁性收集方法,并对分离机制有了更深入的了解,以改善和推进藻类生物燃料产业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信