N. Sato, G. Allen, William P. Benson, B. Buford, Atreyee Chakraborty, M. Christenson, T. Gosavi, P. Heil, N. Kabir, B. Krist, K. O’Brien, K. Oguz, Rohan Patil, J. Pellegren, A. Smith, E. S. Walker, P. Hentges, M. Metz, M. Seth, B. Turkot, C. Wiegand, H. Yoo, I. Young
{"title":"CMOS Compatible Process Integration of SOT-MRAM with Heavy-Metal Bi-Layer Bottom Electrode and 10ns Field-Free SOT Switching with STT Assist","authors":"N. Sato, G. Allen, William P. Benson, B. Buford, Atreyee Chakraborty, M. Christenson, T. Gosavi, P. Heil, N. Kabir, B. Krist, K. O’Brien, K. Oguz, Rohan Patil, J. Pellegren, A. Smith, E. S. Walker, P. Hentges, M. Metz, M. Seth, B. Turkot, C. Wiegand, H. Yoo, I. Young","doi":"10.1109/VLSITechnology18217.2020.9265028","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a CMOS compatible process integration of spin-orbit torque (SOT) device with a unique bilayer SOT bottom electrode. An effective spin-Hall angle of 0.27, a median tunneling magneto-resistance ratio of 127% at electrical CD of 57 nm, and a 96% resistance-based MTJ yield on 300 mm scale were achieved. We experimentally validated the two-pulse field-free SOT switching scheme with spin-transfer torque assist at 10ns. Unlike conventional field-free SOT switching schemes, the demonstrated scheme adds no complexity to process integration.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"54 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper demonstrates a CMOS compatible process integration of spin-orbit torque (SOT) device with a unique bilayer SOT bottom electrode. An effective spin-Hall angle of 0.27, a median tunneling magneto-resistance ratio of 127% at electrical CD of 57 nm, and a 96% resistance-based MTJ yield on 300 mm scale were achieved. We experimentally validated the two-pulse field-free SOT switching scheme with spin-transfer torque assist at 10ns. Unlike conventional field-free SOT switching schemes, the demonstrated scheme adds no complexity to process integration.