Lin Liang, A. Huang, Woongje Sung, Meng-Chia Lee, Xiaoqing Song, Chang Peng, Lin Cheng, J. Palmour, C. Scozzie
{"title":"Turn-on capability of 22 kV SiC Emitter Turn-off (ETO) Thyristor","authors":"Lin Liang, A. Huang, Woongje Sung, Meng-Chia Lee, Xiaoqing Song, Chang Peng, Lin Cheng, J. Palmour, C. Scozzie","doi":"10.1109/WIPDA.2015.7369275","DOIUrl":null,"url":null,"abstract":"The turn-on characteristics for the SiC p-ETO are researched in this paper. By establishing the two-dimensional numerical model of the SiC p-ETO, the influence of the device parameters and external circuit conditions on the turn-on speed is discussed. The experiments agree with the simulated results well. The npn turn-on mode of ETO is captured in a high di/dt experiment, which proves the existence of the FBSOA for this time hence the possibility of its application in converters without di/dt snubber. According to the intrinsic temperature limitation of the SiC material, the simulation shows that the peak power density of the SiC p-ETO during turn-on could reach several tens of MW/cm2.","PeriodicalId":6538,"journal":{"name":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"92 1","pages":"192-195"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2015.7369275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The turn-on characteristics for the SiC p-ETO are researched in this paper. By establishing the two-dimensional numerical model of the SiC p-ETO, the influence of the device parameters and external circuit conditions on the turn-on speed is discussed. The experiments agree with the simulated results well. The npn turn-on mode of ETO is captured in a high di/dt experiment, which proves the existence of the FBSOA for this time hence the possibility of its application in converters without di/dt snubber. According to the intrinsic temperature limitation of the SiC material, the simulation shows that the peak power density of the SiC p-ETO during turn-on could reach several tens of MW/cm2.