{"title":"Atomistic Engineering of Ag/Pt nanoclusters for remarkably boosted mass electrocatalytic activity","authors":"Liangzhen Liu, Qiangyu Zhu, Junwei Li, Junxiang Chen, Junheng Huang, Qingfu Sun, Z. Wen","doi":"10.20517/energymater.2022.03","DOIUrl":null,"url":null,"abstract":"It is of vital importance to boost the intrinsic activity and augment the active sites of expensive and scarce platinum-based catalysts for advancing a variety of electrochemical energy applications. We herein report a mild electrochemical bottom-up approach to deposit ultrafine, but stable, Pt8Ag4 alloy clusters on carbon nanotubes (CNTs) by elaborately designing bimetallic organic cluster precursors with four silver and eight platinum atoms coordinated with µ,σ-bridged ethynylpyridine ligands, i.e., [Ag4(C24H16N4Pt)8(BF4)4]. The Pt8Ag4 cluster/CNT hybrids present impressively high platinum mass activity that is threefold that of commercial Pt/C toward the hydrogen evolution reaction, as a result of the cooperative contributions from the Ag atoms that enhance the intrinsic activity and the CNT supports that increase the activity sites. The present work affords an attractive avenue for engineering and stabilizing Pt-based nanoclusters at the atomic level and represents a promising strategy for the development of high-efficiency and durable electrocatalysts.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2022.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
It is of vital importance to boost the intrinsic activity and augment the active sites of expensive and scarce platinum-based catalysts for advancing a variety of electrochemical energy applications. We herein report a mild electrochemical bottom-up approach to deposit ultrafine, but stable, Pt8Ag4 alloy clusters on carbon nanotubes (CNTs) by elaborately designing bimetallic organic cluster precursors with four silver and eight platinum atoms coordinated with µ,σ-bridged ethynylpyridine ligands, i.e., [Ag4(C24H16N4Pt)8(BF4)4]. The Pt8Ag4 cluster/CNT hybrids present impressively high platinum mass activity that is threefold that of commercial Pt/C toward the hydrogen evolution reaction, as a result of the cooperative contributions from the Ag atoms that enhance the intrinsic activity and the CNT supports that increase the activity sites. The present work affords an attractive avenue for engineering and stabilizing Pt-based nanoclusters at the atomic level and represents a promising strategy for the development of high-efficiency and durable electrocatalysts.