About some speeds of convergence to the constant of Euler

A. Vernescu
{"title":"About some speeds of convergence to the constant of Euler","authors":"A. Vernescu","doi":"10.31926/but.mif.2022.2.64.2.13","DOIUrl":null,"url":null,"abstract":"The speed of convergence of the classical sequence which defines the constant of Euler (or Euler-Mascheroni), γ = lim n→∞ γn = 0, 577215 . . . , where γn =(∑k=1n 1/k ) − ln n, was intensively studied. In 1983 I established in [14] one of the first two sided estimates of this speed, namely 1/2n+1 < γn−γ < 1/2n. Further several new sequences with a faster convergence are defined either by modifying the argument of the logarithm (De Temple, 1993, Negoi 1997, Ivan 2002) or by modifying the last term 1/n of the harmonic sum (Vernescu 1999). Now we give a systematic study of these speeds of convergence and especially of the last ones.","PeriodicalId":53266,"journal":{"name":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2022.2.64.2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The speed of convergence of the classical sequence which defines the constant of Euler (or Euler-Mascheroni), γ = lim n→∞ γn = 0, 577215 . . . , where γn =(∑k=1n 1/k ) − ln n, was intensively studied. In 1983 I established in [14] one of the first two sided estimates of this speed, namely 1/2n+1 < γn−γ < 1/2n. Further several new sequences with a faster convergence are defined either by modifying the argument of the logarithm (De Temple, 1993, Negoi 1997, Ivan 2002) or by modifying the last term 1/n of the harmonic sum (Vernescu 1999). Now we give a systematic study of these speeds of convergence and especially of the last ones.
关于一些收敛到欧拉常数的速度
定义Euler(或Euler- mascheroni)常数γ = lim n→∞γn = 0,577215的经典序列的收敛速度。,其中γn =(∑k=1n 1/k)−lnn,进行了深入研究。1983年,我在[14]中建立了该速度的第一个双面估计之一,即1/2n+1 < γn−γ < 1/2n。通过修改对数的参数(De Temple, 1993, Negoi 1997, Ivan 2002)或修改调和和的最后一项1/n (Vernescu 1999),进一步定义了几个收敛速度更快的新序列。现在我们系统地研究这些收敛速度,特别是最后一个收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
11
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信