J. Verduijn, G. Tettamanzi, R. Wacquez, B. Roche, B. Voisin, X. Jehl, M. Sanquer, S. Rogge
{"title":"Mapping of single donors in nano-scale MOSFETs at low temperature","authors":"J. Verduijn, G. Tettamanzi, R. Wacquez, B. Roche, B. Voisin, X. Jehl, M. Sanquer, S. Rogge","doi":"10.1109/SNW.2012.6243341","DOIUrl":null,"url":null,"abstract":"Using low temperature measurements we have been able to identify the influence of only about five donors in the channel the channel of an ultra-scaled MOSFET as the source of an anomalously low room temperature threshold voltage and large sub-threshold slope. Further we observe the influence of these dopants on the low temperature threshold voltage shift as a function of applied back gate voltage. The understanding of this behavior allows us to identify resonant tunneling mediated by a single donor in the channel of a doped channel device and we show that the back gate strongly modifies the tunnel coupling. These results give new insights in dopant transport in ultra-scaled MOSFETs, which is relevant for conventional device characteristics as well as for new dopant-based device architectures.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"143 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Using low temperature measurements we have been able to identify the influence of only about five donors in the channel the channel of an ultra-scaled MOSFET as the source of an anomalously low room temperature threshold voltage and large sub-threshold slope. Further we observe the influence of these dopants on the low temperature threshold voltage shift as a function of applied back gate voltage. The understanding of this behavior allows us to identify resonant tunneling mediated by a single donor in the channel of a doped channel device and we show that the back gate strongly modifies the tunnel coupling. These results give new insights in dopant transport in ultra-scaled MOSFETs, which is relevant for conventional device characteristics as well as for new dopant-based device architectures.