Kaehlerian Manifolds on Einstein-Recurrent curvature tensor

U. S. Negi, Sulochana Sulochana
{"title":"Kaehlerian Manifolds on Einstein-Recurrent curvature tensor","authors":"U. S. Negi, Sulochana Sulochana","doi":"10.51220/jmr.v17i2.37","DOIUrl":null,"url":null,"abstract":"Bochner (1949) obtained some results on curvature and betti numbers. Hasegawa (1974) studied on H projective recurrent Kaehlerian manifolds and Bochner recurrent Kaehlerian manifolds. Also, Negi (2016) obtained Some Recurrence Properties in Kaehlerian, Einstein Kaehlerian and Tachibana Spaces. After that, Negi et. al. (2019) studied on Projective recurrent and symmetric tensor in almost Kaehlerian spaces. Again, Negi and Sulochana (2021) have studied on conformal symmetric tensor of kaehlerian manifolds. In this paper, the author calculated some properties of Kaehlerian Manifolds on Einstein-Recurrent curvature tensor and computes the relations between special type curvature tensors","PeriodicalId":31687,"journal":{"name":"Journal of Mountain Area Research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mountain Area Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51220/jmr.v17i2.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bochner (1949) obtained some results on curvature and betti numbers. Hasegawa (1974) studied on H projective recurrent Kaehlerian manifolds and Bochner recurrent Kaehlerian manifolds. Also, Negi (2016) obtained Some Recurrence Properties in Kaehlerian, Einstein Kaehlerian and Tachibana Spaces. After that, Negi et. al. (2019) studied on Projective recurrent and symmetric tensor in almost Kaehlerian spaces. Again, Negi and Sulochana (2021) have studied on conformal symmetric tensor of kaehlerian manifolds. In this paper, the author calculated some properties of Kaehlerian Manifolds on Einstein-Recurrent curvature tensor and computes the relations between special type curvature tensors
爱因斯坦-循环曲率张量上的Kaehlerian流形
Bochner(1949)获得了关于曲率和贝蒂数的一些结果。Hasegawa(1974)研究了H射影递归kaehlian流形和Bochner递归kaehlian流形。此外,Negi(2016)获得了Kaehlerian、Einstein Kaehlerian和立花空间中的一些递归性质。之后,Negi et. al.(2019)研究了几乎Kaehlerian空间中的投影递归对称张量。同样,Negi和Sulochana(2021)研究了kaehlerian流形的共形对称张量。本文计算了Einstein-Recurrent曲率张量上Kaehlerian流形的一些性质,并计算了特殊类型曲率张量之间的关系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
3
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信