{"title":"Influence of alkyl chain length of lipid in caffeine detection using taste sensor with lipid/polymer membranes","authors":"H. Shen, M. Habara, K. Toko","doi":"10.1109/ICSENST.2008.4757186","DOIUrl":null,"url":null,"abstract":"The taste sensor was widely used in distinguishing various taste substances. However, the taste sensor has poorer sensitivity to uncharged molecules such as caffeine, a bitter substance, than to charged taste substances. In the present study, we discussed the sensitivity of caffeine detection using a taste sensor with lipid/polymer membranes that were formed with different length of methyl group of lipid, namely, tetra-n-ctylammonium bromide (R8), tetrakis-(decyl)-ammonium bromide (R10), tetradodecylammonium bromide (TDAB; R12), and tetrahexadecylammonium bromide (R16). As a result, we observed that the electric responses of the lipid membranes to caffeine were associated with the length of alkyl chain of a lipid and an optimum concentration of the lipids in membranes was also observed to enhance the sensitivity of caffeine with taste sensor.","PeriodicalId":6299,"journal":{"name":"2008 3rd International Conference on Sensing Technology","volume":"163 1","pages":"652-655"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Sensing Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2008.4757186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The taste sensor was widely used in distinguishing various taste substances. However, the taste sensor has poorer sensitivity to uncharged molecules such as caffeine, a bitter substance, than to charged taste substances. In the present study, we discussed the sensitivity of caffeine detection using a taste sensor with lipid/polymer membranes that were formed with different length of methyl group of lipid, namely, tetra-n-ctylammonium bromide (R8), tetrakis-(decyl)-ammonium bromide (R10), tetradodecylammonium bromide (TDAB; R12), and tetrahexadecylammonium bromide (R16). As a result, we observed that the electric responses of the lipid membranes to caffeine were associated with the length of alkyl chain of a lipid and an optimum concentration of the lipids in membranes was also observed to enhance the sensitivity of caffeine with taste sensor.