Agung Kristanto, M. S. Neubert, S. Promkotra, W. Sessomboon
{"title":"FABRICATION AND THERMO-MECHANICAL CHARACTERISTICS OF PHBV/LATEX/VEGETABLE OIL COMPOSITES-MODIFYING ON BIOCOMPOSITES","authors":"Agung Kristanto, M. S. Neubert, S. Promkotra, W. Sessomboon","doi":"10.26480/jmerd.05.2019.106.109","DOIUrl":null,"url":null,"abstract":"Polyhydroxybutyrate-co-hydroxyvalerate (PHBV, P) and natural latex (L) are mixed together to improve biostructures due to very stiff PHBV and high resilient natural latex. Another raw material added in PHBV/L mixtures is a vegetable oil which is vary between virgin coconut oil (VC) and cooking coconut oil (CC). Then, the three mixtures are known for P-L-C biocomposites. These three different components among PHBV, natural latex, and the coconut oil are considered to obtain their proper mechanical properties. The 2% and 3% (w/v) of PHBV concentrations (2P, 3P) in chloroform are started as the main component, and mixed to natural latex (L) and coconut oil (VC or CC) as the blended films in the ratio of 12:8:1, 10:10:1, 8:12:1, and compared to 6:4:1, 5:5:1, 4:6:1, respectively. The blends are specified the thermal property by the differential scanning calorimetry and also distinguished with their crystallinity. Besides, they are also characterized the tensile strength by universal testing machine. The degree of crystallinity is inversely proportional to the melting temperature particularly for 3Px-Lx-C1. The 3% w/v of PHBV-Latex-Coconut oil blends presents higher melting temperature than the 2% w/v of PHBV-Latex-Coconut oil mixtures. Adding coconut oil mixes show a lower melting temperature at 166-167oC when is compared to the mixture without coconut oil at 168-169oC. The virgin coconut oil mixes specify no inconsistency of the melting temperature, enthalpy, and degree of crystallinity. The addition of the coconut oil can diminish the 50% of tensile strength and the 6-7% of tensile modulus. The cooking coconut oil added in the 2% w/v PHBV-Latex matrix affects a 10% increase in tensile modulus related to the 3% w/v PHBV-Latex matrix. The appearance of the coconut oil in the blend is suitable for conformity of plastic deformation.","PeriodicalId":16153,"journal":{"name":"Journal of Mechanical Engineering Research and Developments","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Research and Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/jmerd.05.2019.106.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Polyhydroxybutyrate-co-hydroxyvalerate (PHBV, P) and natural latex (L) are mixed together to improve biostructures due to very stiff PHBV and high resilient natural latex. Another raw material added in PHBV/L mixtures is a vegetable oil which is vary between virgin coconut oil (VC) and cooking coconut oil (CC). Then, the three mixtures are known for P-L-C biocomposites. These three different components among PHBV, natural latex, and the coconut oil are considered to obtain their proper mechanical properties. The 2% and 3% (w/v) of PHBV concentrations (2P, 3P) in chloroform are started as the main component, and mixed to natural latex (L) and coconut oil (VC or CC) as the blended films in the ratio of 12:8:1, 10:10:1, 8:12:1, and compared to 6:4:1, 5:5:1, 4:6:1, respectively. The blends are specified the thermal property by the differential scanning calorimetry and also distinguished with their crystallinity. Besides, they are also characterized the tensile strength by universal testing machine. The degree of crystallinity is inversely proportional to the melting temperature particularly for 3Px-Lx-C1. The 3% w/v of PHBV-Latex-Coconut oil blends presents higher melting temperature than the 2% w/v of PHBV-Latex-Coconut oil mixtures. Adding coconut oil mixes show a lower melting temperature at 166-167oC when is compared to the mixture without coconut oil at 168-169oC. The virgin coconut oil mixes specify no inconsistency of the melting temperature, enthalpy, and degree of crystallinity. The addition of the coconut oil can diminish the 50% of tensile strength and the 6-7% of tensile modulus. The cooking coconut oil added in the 2% w/v PHBV-Latex matrix affects a 10% increase in tensile modulus related to the 3% w/v PHBV-Latex matrix. The appearance of the coconut oil in the blend is suitable for conformity of plastic deformation.
期刊介绍:
The scopes of the journal include, but are not limited to, the following topics: • Thermal Engineering and Fluids Engineering • Mechanics • Kinematics, Dynamics, & Control of Mechanical Systems • Mechatronics, Robotics and Automation • Design, Manufacturing, & Product Development • Human and Machine Haptics Specific topics of interest include: Advanced Manufacturing Technology, Analysis and Decision of Industry & Manufacturing System, Applied Mechanics, Biomechanics, CAD/CAM Integration Technology, Complex Curve Design, Manufacturing & Application, Computational Mechanics, Computer-aided Geometric Design & Simulation, Fluid Dynamics, Fluid Mechanics, General mechanics, Geomechanics, Industrial Application of CAD, Machinery and Machine Design, Machine Vision and Learning, Material Science and Processing, Mechanical Power Engineering, Mechatronics and Robotics, Artificial Intelligence, PC Guided Design and Manufacture, Precision Manufacturing & Measurement, Precision Mechanics, Production Technology, Quality & Reliability Engineering, Renewable Energy Technologies, Science and Engineering Computing, Solid Mechanics, Structural Dynamics, System Dynamics and Simulation, Systems Science and Systems Engineering, Vehicle Dynamic Performance Simulation, Virtual-tech Based System & Process-simulation, etc.