Integral Results Related to Similarly Separable Vectors in Separable Hilbert Spaces

R. Agarwal, Asif R Khan, Sumayyah Saadi
{"title":"Integral Results Related to Similarly Separable Vectors in Separable Hilbert Spaces","authors":"R. Agarwal, Asif R Khan, Sumayyah Saadi","doi":"10.3390/foundations2030055","DOIUrl":null,"url":null,"abstract":"In this work, we use similarly separable vectors in separable Hilbert spaces to provide generalized integral results related to majorization, Niezgoda, and Ćebysév type inequalities. Next, we furnish some refinements of these inequalities. Theorems obtained in this work extend and improve several known results in the literature. An important aspect of our work is that these inequalities are directly related to Arithmetic, Geometric, Harmonic, and Power means. These means have played an important role in many branches of arts and sciences since the last 2600 years.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations2030055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we use similarly separable vectors in separable Hilbert spaces to provide generalized integral results related to majorization, Niezgoda, and Ćebysév type inequalities. Next, we furnish some refinements of these inequalities. Theorems obtained in this work extend and improve several known results in the literature. An important aspect of our work is that these inequalities are directly related to Arithmetic, Geometric, Harmonic, and Power means. These means have played an important role in many branches of arts and sciences since the last 2600 years.
可分离希尔伯特空间中类似可分离向量的积分结果
在这项工作中,我们在可分离希尔伯特空间中使用类似的可分离向量来提供与多数化、涅兹哥达和Ćebysév型不等式相关的广义积分结果。接下来,我们给出这些不等式的一些改进。在这项工作中得到的定理扩展和改进了文献中几个已知的结果。我们工作的一个重要方面是,这些不等式与算术、几何、谐波和幂方法直接相关。自过去2600年以来,这些手段在许多艺术和科学分支中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信