Merging Time‐Series Australian Data Across Databases: Challenges and Solutions

D. Katselas, Baljit K. Sidhu, Chuan Yu
{"title":"Merging Time‐Series Australian Data Across Databases: Challenges and Solutions","authors":"D. Katselas, Baljit K. Sidhu, Chuan Yu","doi":"10.1111/acfi.12123","DOIUrl":null,"url":null,"abstract":"This study discusses the differences in company identification across sources of Australian data and raises important issues which should be considered prior to merging across databases. In particular, we show that the practice among accounting databases of overwriting prior identifiers used by a given company, with its most recent, results in failure to match data which actually exists. We suggest a method for reconciling these differences and show that our method results in a match rate of 97 percent with the Aspect company identification file, and 94 percent after missing accounting data is considered. This contrasts with a match rate of only 71 percent when performing a direct merge.","PeriodicalId":8737,"journal":{"name":"Behavioral & Experimental Accounting eJournal","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral & Experimental Accounting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/acfi.12123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This study discusses the differences in company identification across sources of Australian data and raises important issues which should be considered prior to merging across databases. In particular, we show that the practice among accounting databases of overwriting prior identifiers used by a given company, with its most recent, results in failure to match data which actually exists. We suggest a method for reconciling these differences and show that our method results in a match rate of 97 percent with the Aspect company identification file, and 94 percent after missing accounting data is considered. This contrasts with a match rate of only 71 percent when performing a direct merge.
跨数据库合并时间序列澳大利亚数据:挑战和解决方案
本研究讨论了跨澳大利亚数据来源的公司识别差异,并提出了跨数据库合并之前应考虑的重要问题。特别是,我们表明,在会计数据库中,将给定公司使用的先前标识符与最近的标识符覆盖的做法导致无法匹配实际存在的数据。我们提出了一种调和这些差异的方法,并表明我们的方法与Aspect公司标识文件的匹配率为97%,在考虑缺少会计数据后,匹配率为94%。这与执行直接合并时只有71%的匹配率形成了鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信