Addressing Key Challenges for SiGe-pFin Technologies: Fin Integrity, Low-DIT Si-cap-free Gate Stack and Optimizing the Channel Strain

H. Arimura, E. Capogreco, K. Wostyn, G. Eneman, L. Ragnarsson, S. Brus, S. Baudot, A. Peter, T. Schram, P. Favia, O. Richard, H. Bender, J. Mitard, N. Horiguchi
{"title":"Addressing Key Challenges for SiGe-pFin Technologies: Fin Integrity, Low-DIT Si-cap-free Gate Stack and Optimizing the Channel Strain","authors":"H. Arimura, E. Capogreco, K. Wostyn, G. Eneman, L. Ragnarsson, S. Brus, S. Baudot, A. Peter, T. Schram, P. Favia, O. Richard, H. Bender, J. Mitard, N. Horiguchi","doi":"10.1109/VLSITechnology18217.2020.9265035","DOIUrl":null,"url":null,"abstract":"This paper shows the importance of oxygen control at the SiGe fin surface and within the gate stack. Optimized SiN liners are required to protect SiGe fins from oxidation during a flowable CVD (FCVD) densification anneal. Suppression of oxygen diffusion or scavenging from GeO via metal electrode is essential to achieve a low-D<inf>IT</inf> SiGe gate stack. By replacing HfO<inf>2</inf> with other dielectrics offering lower oxygen diffusivity, impact of metal electrode deposition process as well as the HfO<inf>2</inf> nitridation is corroborated to be related to the oxygen diffusivity. Finally, when using an embedded B-doped Si<inf>0.4</inf>Ge<inf>0.6</inf>S/D, higher channel strain in Si<inf>0.</inf><inf>7</inf>Ge<inf>0.3</inf> than in Si p-fins is obtained as predicted by TCAD.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"2 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper shows the importance of oxygen control at the SiGe fin surface and within the gate stack. Optimized SiN liners are required to protect SiGe fins from oxidation during a flowable CVD (FCVD) densification anneal. Suppression of oxygen diffusion or scavenging from GeO via metal electrode is essential to achieve a low-DIT SiGe gate stack. By replacing HfO2 with other dielectrics offering lower oxygen diffusivity, impact of metal electrode deposition process as well as the HfO2 nitridation is corroborated to be related to the oxygen diffusivity. Finally, when using an embedded B-doped Si0.4Ge0.6S/D, higher channel strain in Si0.7Ge0.3 than in Si p-fins is obtained as predicted by TCAD.
解决SiGe-pFin技术的关键挑战:翅片完整性,低dit无硅帽栅极堆栈和优化通道应变
本文论述了在硅片表面和栅堆内控制氧的重要性。在可流动CVD (FCVD)致密化退火过程中,需要优化的SiN衬垫来保护SiGe翅片免受氧化。通过金属电极抑制氧扩散或清除GeO是实现低dit SiGe栅极堆叠的必要条件。通过用其他具有较低氧扩散率的介质代替HfO2,证实了金属电极沉积工艺以及HfO2氮化的影响与氧扩散率有关。最后,当使用嵌入b掺杂的Si0.4Ge0.6S/D时,与TCAD预测的结果一致,Si0.7Ge0.3中的通道应变高于Si p-fins。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信