Universal consistency of Wasserstein k-NN classifier: a negative and some positive results

IF 1.6 4区 数学 Q2 MATHEMATICS, APPLIED
Donlapark Ponnoprat
{"title":"Universal consistency of Wasserstein k-NN classifier: a negative and some positive results","authors":"Donlapark Ponnoprat","doi":"10.1093/imaiai/iaad027","DOIUrl":null,"url":null,"abstract":"\n We study the $k$-nearest neighbour classifier ($k$-NN) of probability measures under the Wasserstein distance. We show that the $k$-NN classifier is not universally consistent on the space of measures supported in $(0,1)$. As any Euclidean ball contains a copy of $(0,1)$, one should not expect to obtain universal consistency without some restriction on the base metric space, or the Wasserstein space itself. To this end, via the notion of $\\sigma $-finite metric dimension, we show that the $k$-NN classifier is universally consistent on spaces of discrete measures (and more generally, $\\sigma $-finite uniformly discrete measures) with rational mass. In addition, by studying the geodesic structures of the Wasserstein spaces for $p=1$ and $p=2$, we show that the $k$-NN classifier is universally consistent on spaces of measures supported on a finite set, the space of Gaussian measures and spaces of measures with finite wavelet series densities.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"3 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the $k$-nearest neighbour classifier ($k$-NN) of probability measures under the Wasserstein distance. We show that the $k$-NN classifier is not universally consistent on the space of measures supported in $(0,1)$. As any Euclidean ball contains a copy of $(0,1)$, one should not expect to obtain universal consistency without some restriction on the base metric space, or the Wasserstein space itself. To this end, via the notion of $\sigma $-finite metric dimension, we show that the $k$-NN classifier is universally consistent on spaces of discrete measures (and more generally, $\sigma $-finite uniformly discrete measures) with rational mass. In addition, by studying the geodesic structures of the Wasserstein spaces for $p=1$ and $p=2$, we show that the $k$-NN classifier is universally consistent on spaces of measures supported on a finite set, the space of Gaussian measures and spaces of measures with finite wavelet series densities.
Wasserstein k-NN分类器的普遍一致性:一个否定和一些肯定的结果
研究了Wasserstein距离下概率测度的k近邻分类器(k -NN)。我们证明了$k$-NN分类器在$(0,1)$中支持的测度空间上不是普遍一致的。由于任何欧几里得球都包含$(0,1)$的副本,因此不应期望在基本度量空间或Wasserstein空间本身没有某些限制的情况下获得全称一致性。为此,通过$\sigma $-有限度量维的概念,我们证明了$k$-NN分类器在具有有理质量的离散测度(更一般地说,$\sigma $-有限一致离散测度)的空间上是普遍一致的。此外,通过研究$p=1$和$p=2$的Wasserstein空间的测地线结构,我们证明了$k$-NN分类器在有限集合支持的测度空间、高斯测度空间和小波序列密度有限的测度空间上是普遍一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信