{"title":"Universal consistency of Wasserstein k-NN classifier: a negative and some positive results","authors":"Donlapark Ponnoprat","doi":"10.1093/imaiai/iaad027","DOIUrl":null,"url":null,"abstract":"\n We study the $k$-nearest neighbour classifier ($k$-NN) of probability measures under the Wasserstein distance. We show that the $k$-NN classifier is not universally consistent on the space of measures supported in $(0,1)$. As any Euclidean ball contains a copy of $(0,1)$, one should not expect to obtain universal consistency without some restriction on the base metric space, or the Wasserstein space itself. To this end, via the notion of $\\sigma $-finite metric dimension, we show that the $k$-NN classifier is universally consistent on spaces of discrete measures (and more generally, $\\sigma $-finite uniformly discrete measures) with rational mass. In addition, by studying the geodesic structures of the Wasserstein spaces for $p=1$ and $p=2$, we show that the $k$-NN classifier is universally consistent on spaces of measures supported on a finite set, the space of Gaussian measures and spaces of measures with finite wavelet series densities.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the $k$-nearest neighbour classifier ($k$-NN) of probability measures under the Wasserstein distance. We show that the $k$-NN classifier is not universally consistent on the space of measures supported in $(0,1)$. As any Euclidean ball contains a copy of $(0,1)$, one should not expect to obtain universal consistency without some restriction on the base metric space, or the Wasserstein space itself. To this end, via the notion of $\sigma $-finite metric dimension, we show that the $k$-NN classifier is universally consistent on spaces of discrete measures (and more generally, $\sigma $-finite uniformly discrete measures) with rational mass. In addition, by studying the geodesic structures of the Wasserstein spaces for $p=1$ and $p=2$, we show that the $k$-NN classifier is universally consistent on spaces of measures supported on a finite set, the space of Gaussian measures and spaces of measures with finite wavelet series densities.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.