{"title":"An Irrational Turán Density via Hypergraph Lagrangian Densities","authors":"Biao Wu","doi":"10.37236/10645","DOIUrl":null,"url":null,"abstract":"Baber and Talbot asked whether there is an irrational Turán density of a single hypergraph. In this paper, we show that the Lagrangian density of a 4-uniform matching of size 3 is an irrational number. Sidorenko showed that the Lagrangian density of an r-uniform hypergraph F is the same as the Turán density of the extension of F. Therefore, our result gives a positive answer to the question of Baber and Talbot. We also determine the Lagrangian densities of a class of r-uniform hypergraphs on n vertices with θ(n2) edges. As far as we know, for every hypergraph F with known hypergraph Lagrangian density, the number of edges in F is less than the number of its vertices.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"3 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/10645","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Baber and Talbot asked whether there is an irrational Turán density of a single hypergraph. In this paper, we show that the Lagrangian density of a 4-uniform matching of size 3 is an irrational number. Sidorenko showed that the Lagrangian density of an r-uniform hypergraph F is the same as the Turán density of the extension of F. Therefore, our result gives a positive answer to the question of Baber and Talbot. We also determine the Lagrangian densities of a class of r-uniform hypergraphs on n vertices with θ(n2) edges. As far as we know, for every hypergraph F with known hypergraph Lagrangian density, the number of edges in F is less than the number of its vertices.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.