Flip-Chip Flux Evolution

A. Mackie, Hyoryoon Jo, S. Lim
{"title":"Flip-Chip Flux Evolution","authors":"A. Mackie, Hyoryoon Jo, S. Lim","doi":"10.4071/2380-4505-2019.1.000115","DOIUrl":null,"url":null,"abstract":"\n Flip-chip assembly accounts for more than 80% of the advanced packaging technology platform, compared to fan-in, fan-out, embedded die, and through silicon via (TSV). Flip-chip interconnect remains a critical assembly process for large die used in artificial intelligence processors; thin die that warps at elevated temperatures; heterogeneous integration in SiP applications; flip-chip on leadframe; and MicroLED die usage.\n This paper will first outline trends in evolving flip-chip and direct chip placement (DCP) technology, then will examine the changing nature of the solder bump, the interconnect itself, and the substrate. Many variables of the flip-chip assembly process will be discussed, including standard solder bumps to micro Cu-pillar bumps with different alloys; different pad surface finishes of Cu OSP, NiAu, and solder on pad (SOP); and from regular pads on substrates to bond-on-trace applications. A major focus will be on flip-chip assembly methods, from old C4 conventional reflow processing to thermocompression bonding (TCB), and the latest laser assisted bonding (LAB) technology, with an emphasis on how the usage of different technologies necessitates different assembly materials, especially fluxes. Flip-chip fluxes such as the commonly used water-washable flux, the standard no-clean flux, and the ultra-low residue flux, and how these fluxes react to different processing methods, will be an area of discussion. Finally, the paper will examine the need for increased reliability as the technology inevitably moves into the high-volume, zero-defect arena of automotive electronics.","PeriodicalId":14363,"journal":{"name":"International Symposium on Microelectronics","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/2380-4505-2019.1.000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Flip-chip assembly accounts for more than 80% of the advanced packaging technology platform, compared to fan-in, fan-out, embedded die, and through silicon via (TSV). Flip-chip interconnect remains a critical assembly process for large die used in artificial intelligence processors; thin die that warps at elevated temperatures; heterogeneous integration in SiP applications; flip-chip on leadframe; and MicroLED die usage. This paper will first outline trends in evolving flip-chip and direct chip placement (DCP) technology, then will examine the changing nature of the solder bump, the interconnect itself, and the substrate. Many variables of the flip-chip assembly process will be discussed, including standard solder bumps to micro Cu-pillar bumps with different alloys; different pad surface finishes of Cu OSP, NiAu, and solder on pad (SOP); and from regular pads on substrates to bond-on-trace applications. A major focus will be on flip-chip assembly methods, from old C4 conventional reflow processing to thermocompression bonding (TCB), and the latest laser assisted bonding (LAB) technology, with an emphasis on how the usage of different technologies necessitates different assembly materials, especially fluxes. Flip-chip fluxes such as the commonly used water-washable flux, the standard no-clean flux, and the ultra-low residue flux, and how these fluxes react to different processing methods, will be an area of discussion. Finally, the paper will examine the need for increased reliability as the technology inevitably moves into the high-volume, zero-defect arena of automotive electronics.
倒装磁通演化
与扇入、扇出、嵌入式芯片和通硅孔(TSV)相比,倒装芯片组装占先进封装技术平台的80%以上。倒装互连仍然是人工智能处理器中大型模具的关键组装工艺;在高温下弯曲的薄模具;SiP应用中的异构集成;引线架上的倒装芯片;和MicroLED芯片的使用。本文将首先概述倒装芯片和直接芯片放置(DCP)技术的发展趋势,然后将研究焊料凸点、互连本身和基板的变化性质。将讨论倒装芯片组装过程中的许多变量,包括标准焊料凸起到不同合金的微铜柱凸起;铜OSP、NiAu、焊盘上焊料的不同焊盘表面处理(SOP);从基材上的普通衬垫到跟踪粘接应用。重点将是倒装芯片组装方法,从旧的C4传统回流处理到热压键合(TCB),以及最新的激光辅助键合(LAB)技术,重点是不同技术的使用如何需要不同的组装材料,特别是焊剂。倒装芯片焊剂,如常用的可水洗焊剂、标准免清洗焊剂和超低残留焊剂,以及这些焊剂对不同加工方法的反应将是一个讨论领域。最后,本文将探讨随着该技术不可避免地进入汽车电子的大批量、零缺陷领域,对提高可靠性的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信