Quasi-bi-Hamiltonian structures and superintegrability: Study of a Kepler-related family of systems endowed with generalized Runge-Lenz integrals of motion
{"title":"Quasi-bi-Hamiltonian structures and superintegrability: Study of a Kepler-related family of systems endowed with generalized Runge-Lenz integrals of motion","authors":"M. F. Ranada","doi":"10.3934/JGM.2021003","DOIUrl":null,"url":null,"abstract":"The existence of quasi-bi-Hamiltonian structures for a two-dimen-sional superintegrable \\begin{document}$ (k_1,k_2,k_3) $\\end{document} -dependent Kepler-related problem is studied. We make use of an approach that is related with the existence of some complex functions which satisfy interesting Poisson bracket relations and that was previously applied to the standard Kepler problem as well as to some particular superintegrable systems as the Smorodinsky-Winternitz (SW) system, the Tremblay-Turbiner-Winternitz (TTW) and Post-Winternitz (PW) systems. We prove that these complex functions are important for two reasons: first, they determine the integrals of motion, and second they determine the existence of some geometric structures (in this particular case, quasi-bi-Hamiltonian structures). All the results depend on three parameters ( \\begin{document}$ k_1, k_2, k_3 $\\end{document} ) in such a way that in the particular case \\begin{document}$ k_1\\ne 0 $\\end{document} , \\begin{document}$ k_2 = k_3 = 0 $\\end{document} , the properties characterizing the Kepler problem are obtained. This paper can be considered as divided in two parts and every part presents a different approach (different complex functions and different quasi-bi-Hamil-tonian structures).","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JGM.2021003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The existence of quasi-bi-Hamiltonian structures for a two-dimen-sional superintegrable \begin{document}$ (k_1,k_2,k_3) $\end{document} -dependent Kepler-related problem is studied. We make use of an approach that is related with the existence of some complex functions which satisfy interesting Poisson bracket relations and that was previously applied to the standard Kepler problem as well as to some particular superintegrable systems as the Smorodinsky-Winternitz (SW) system, the Tremblay-Turbiner-Winternitz (TTW) and Post-Winternitz (PW) systems. We prove that these complex functions are important for two reasons: first, they determine the integrals of motion, and second they determine the existence of some geometric structures (in this particular case, quasi-bi-Hamiltonian structures). All the results depend on three parameters ( \begin{document}$ k_1, k_2, k_3 $\end{document} ) in such a way that in the particular case \begin{document}$ k_1\ne 0 $\end{document} , \begin{document}$ k_2 = k_3 = 0 $\end{document} , the properties characterizing the Kepler problem are obtained. This paper can be considered as divided in two parts and every part presents a different approach (different complex functions and different quasi-bi-Hamil-tonian structures).
The existence of quasi-bi-Hamiltonian structures for a two-dimen-sional superintegrable \begin{document}$ (k_1,k_2,k_3) $\end{document} -dependent Kepler-related problem is studied. We make use of an approach that is related with the existence of some complex functions which satisfy interesting Poisson bracket relations and that was previously applied to the standard Kepler problem as well as to some particular superintegrable systems as the Smorodinsky-Winternitz (SW) system, the Tremblay-Turbiner-Winternitz (TTW) and Post-Winternitz (PW) systems. We prove that these complex functions are important for two reasons: first, they determine the integrals of motion, and second they determine the existence of some geometric structures (in this particular case, quasi-bi-Hamiltonian structures). All the results depend on three parameters ( \begin{document}$ k_1, k_2, k_3 $\end{document} ) in such a way that in the particular case \begin{document}$ k_1\ne 0 $\end{document} , \begin{document}$ k_2 = k_3 = 0 $\end{document} , the properties characterizing the Kepler problem are obtained. This paper can be considered as divided in two parts and every part presents a different approach (different complex functions and different quasi-bi-Hamil-tonian structures).
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.