{"title":"A Path-Clustering Driving Travel-Route Excavation","authors":"Can Yang","doi":"10.4018/ijswis.306750","DOIUrl":null,"url":null,"abstract":"The refueling trajectory of self-driving tourists is sparse, and it is difficult to restore the real travel route. A sparse trajectory clustering algorithm is proposed based on semantic representation to mine popular self-driving travel routes. Different from the traditional trajectory clustering algorithm based on trajectory point matching, the semantic relationship between different trajectory points is researched in this algorithm, and the low-dimensional vector representation of the trajectory is learned. First, the neural network language model is used to learn the distributed vector representation of the fueling station; then, the average of all the station vectors in each trajectory is taken as the vector representation of the trajectory. Finally, the classic k-means algorithm is used to cluster the trajectory vectors. The final visualization results show that the proposed algorithm effectively mines two popular self-driving travel routes.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"4 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.306750","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The refueling trajectory of self-driving tourists is sparse, and it is difficult to restore the real travel route. A sparse trajectory clustering algorithm is proposed based on semantic representation to mine popular self-driving travel routes. Different from the traditional trajectory clustering algorithm based on trajectory point matching, the semantic relationship between different trajectory points is researched in this algorithm, and the low-dimensional vector representation of the trajectory is learned. First, the neural network language model is used to learn the distributed vector representation of the fueling station; then, the average of all the station vectors in each trajectory is taken as the vector representation of the trajectory. Finally, the classic k-means algorithm is used to cluster the trajectory vectors. The final visualization results show that the proposed algorithm effectively mines two popular self-driving travel routes.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.