Front-side Ag contacts enabling superior recombination and fine-line performance

M. Burrows, A. Meisel, D. Balakrishnan, A. Tran, D. Inns, E. Kim, A. Carroll, K. Mikeska
{"title":"Front-side Ag contacts enabling superior recombination and fine-line performance","authors":"M. Burrows, A. Meisel, D. Balakrishnan, A. Tran, D. Inns, E. Kim, A. Carroll, K. Mikeska","doi":"10.1109/PVSC.2013.6744905","DOIUrl":null,"url":null,"abstract":"The standard silicon solar cell process continues on an evolutionary improvement path. High quality monocrystalline cells are now able to reach 19.2 % conversion efficiencies in industrial production. A key enabler for these high efficiencies has been the front-side Ag contact. This paper will discuss recent developments in this technology on two parallel fronts: reduced recombination and fine line printing. Front-side Ag can reduce solar cell recombination currents directly through reduced metal contact saturation current. In addition front-side Ag can indirectly lower recombination through improved contact formation to low saturation current emitters (lightly doped emitters, or LDE). Through improvements in the frit chemistry a superior recombination performance was enabled, yielding a 3 mV Voc gain and 0.1 % efficiency gain over the control. Improvements in the Ag particle dimensions and paste rheology reduced the optimum finger width approximately 10 μm, increasing Jsc by 0.3 mA/cm2 improving the efficiency gain another 0.1 % over the incumbent technology. In net we are able to demonstrate a next generation front-side Ag paste that can improve efficiency 0.2 %, from 18.8 % to 19.0 %.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"321 1","pages":"2171-2175"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6744905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The standard silicon solar cell process continues on an evolutionary improvement path. High quality monocrystalline cells are now able to reach 19.2 % conversion efficiencies in industrial production. A key enabler for these high efficiencies has been the front-side Ag contact. This paper will discuss recent developments in this technology on two parallel fronts: reduced recombination and fine line printing. Front-side Ag can reduce solar cell recombination currents directly through reduced metal contact saturation current. In addition front-side Ag can indirectly lower recombination through improved contact formation to low saturation current emitters (lightly doped emitters, or LDE). Through improvements in the frit chemistry a superior recombination performance was enabled, yielding a 3 mV Voc gain and 0.1 % efficiency gain over the control. Improvements in the Ag particle dimensions and paste rheology reduced the optimum finger width approximately 10 μm, increasing Jsc by 0.3 mA/cm2 improving the efficiency gain another 0.1 % over the incumbent technology. In net we are able to demonstrate a next generation front-side Ag paste that can improve efficiency 0.2 %, from 18.8 % to 19.0 %.
正面银触点可实现卓越的复合和细线性能
标准硅太阳能电池工艺继续在进化改进的道路上。在工业生产中,高质量的单晶电池的转换效率现在可以达到19.2%。实现这些高效率的关键因素是正面Ag接触。本文将从两个平行的方面讨论该技术的最新发展:减少复合和细线印刷。正面银可以通过降低金属接触饱和电流直接降低太阳能电池复合电流。此外,正面Ag可以通过改善低饱和电流发射体(轻掺杂发射体,或LDE)的接触形成间接降低复合。通过改进熔块化学,实现了优异的复合性能,获得了3 mV的Voc增益和0.1%的效率增益。Ag颗粒尺寸和浆料流变性的改进使最佳指宽减小了约10 μm, Jsc提高了0.3 mA/cm2,效率增益比现有技术提高了0.1%。总之,我们能够展示下一代正面银浆,可以将效率提高0.2%,从18.8%提高到19.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信