Haji Akbar Sulatani, V. Gribniak, Arvydas Rimkus, A. Sokolov, L. Torres
{"title":"COMPARATIVE ANALYSIS OF FLEXURAL STIFFNESS OF CONCRETE ELEMENTS WITH DIFFERENT TYPES OF COMPOSITE REINFORCEMENT SYSTEMS","authors":"Haji Akbar Sulatani, V. Gribniak, Arvydas Rimkus, A. Sokolov, L. Torres","doi":"10.3846/mla.2021.13713","DOIUrl":null,"url":null,"abstract":"Various materials and reinforcement technologies have been created for concrete structures. However, there is no uniform methodology to compare the mechanical characteristics of different reinforcement systems. In structural systems, residual stiffness can estimate the efficiency of the reinforcement. This study introduces a simplified approach for the flexural stiffness analysis. It employs a new testing layout designed with the purpose to form multiple cracks in a small laboratory specimen. The achieved solution requires neither iterative calculations nor a description of the loading history. Several composite reinforcement schemes, including internal glass fibre reinforced polymer (GFRP) bars, carbon fibre reinforced polymer (CFRP) sheets and near-surface mounted (NSM) strips are considered. The analysis of the test results reveals a substantial efficiency of the external CFRP reinforcement systems.","PeriodicalId":30324,"journal":{"name":"Mokslas Lietuvos Ateitis","volume":"202 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mokslas Lietuvos Ateitis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mla.2021.13713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Various materials and reinforcement technologies have been created for concrete structures. However, there is no uniform methodology to compare the mechanical characteristics of different reinforcement systems. In structural systems, residual stiffness can estimate the efficiency of the reinforcement. This study introduces a simplified approach for the flexural stiffness analysis. It employs a new testing layout designed with the purpose to form multiple cracks in a small laboratory specimen. The achieved solution requires neither iterative calculations nor a description of the loading history. Several composite reinforcement schemes, including internal glass fibre reinforced polymer (GFRP) bars, carbon fibre reinforced polymer (CFRP) sheets and near-surface mounted (NSM) strips are considered. The analysis of the test results reveals a substantial efficiency of the external CFRP reinforcement systems.