Size of the giant component in a random geometric graph

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Ghurumuruhan Ganesan
{"title":"Size of the giant component in a random geometric graph","authors":"Ghurumuruhan Ganesan","doi":"10.1214/12-AIHP498","DOIUrl":null,"url":null,"abstract":"In this paper, we study the size of the giant component CG in the random geometric graph G = G(n, rn, f) of n nodes independently distributed each according to a certain density f(.) in [0, 1]2 satisfying infx∈[0,1]2 f(x) > 0. If c1 n ≤ r 2 n ≤ c2 logn n for some positive constants c1, c2 and nr 2 n −→ ∞, we show that the giant component of G contains at least n − o(n) nodes with probability at least 1 − o(1) as n → ∞. We also obtain estimates on the diameter and number of the non-giant components of G.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"48 1","pages":"1130-1140"},"PeriodicalIF":1.2000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/12-AIHP498","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, we study the size of the giant component CG in the random geometric graph G = G(n, rn, f) of n nodes independently distributed each according to a certain density f(.) in [0, 1]2 satisfying infx∈[0,1]2 f(x) > 0. If c1 n ≤ r 2 n ≤ c2 logn n for some positive constants c1, c2 and nr 2 n −→ ∞, we show that the giant component of G contains at least n − o(n) nodes with probability at least 1 − o(1) as n → ∞. We also obtain estimates on the diameter and number of the non-giant components of G.
随机几何图中巨分量的大小
本文研究了随机几何图G = G(n, rn, f)中n个节点各自按照一定密度f(.)独立分布在[0,1]2中,满足infx∈[0,1]2 f(x) > 0的巨型分量CG的大小。如果c1 n≤r2n≤c2 logn,对于某些正常数c1, c2和n2n−→∞,我们证明了当n→∞时,G的巨分量至少包含n−o(n)个节点,且概率至少为1−o(1)。我们还得到了G的非巨分量的直径和数量的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信