Ensemble deep models for covid-19 pandemic classification using chest x-ray images via different fusion techniques

Lamiaa Menshawy, Ahmad Eid, Rehab F. Abdel-Kader
{"title":"Ensemble deep models for covid-19 pandemic classification using chest x-ray images via different fusion techniques","authors":"Lamiaa Menshawy, Ahmad Eid, Rehab F. Abdel-Kader","doi":"10.26555/ijain.v9i1.922","DOIUrl":null,"url":null,"abstract":"A pandemic epidemic called the coronavirus (COVID-19) has already afflicted people all across the world. Radiologists can visually detect coronavirus infection using a chest X-ray. This study examines two methods for categorizing COVID-19 patients based on chest x-rays: pure deep learning and traditional machine learning. In the first model, three deep learning classifiers' decisions are combined using two distinct decision fusion strategies (majority voting and Bayes optimal). To enhance classification performance, the second model merges the ideas of decision and feature fusion. Using the fusion procedure, feature vectors from deep learning models generate a feature set. The classification metrics of conventional machine learning classifiers were then optimized using a voting classifier. The first proposed model performs better than the second model when it concerns diagnosing binary and multiclass classification. The first model obtains an AUC of 0.998 for multi-class classification and 0.9755 for binary classification. The second model obtains a binary classification AUC of 0.9563 and a multiclass classification AUC of 0.968. The suggested models perform better than both the standard learners and state-of-the-art and state-of-the-art methods.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26555/ijain.v9i1.922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A pandemic epidemic called the coronavirus (COVID-19) has already afflicted people all across the world. Radiologists can visually detect coronavirus infection using a chest X-ray. This study examines two methods for categorizing COVID-19 patients based on chest x-rays: pure deep learning and traditional machine learning. In the first model, three deep learning classifiers' decisions are combined using two distinct decision fusion strategies (majority voting and Bayes optimal). To enhance classification performance, the second model merges the ideas of decision and feature fusion. Using the fusion procedure, feature vectors from deep learning models generate a feature set. The classification metrics of conventional machine learning classifiers were then optimized using a voting classifier. The first proposed model performs better than the second model when it concerns diagnosing binary and multiclass classification. The first model obtains an AUC of 0.998 for multi-class classification and 0.9755 for binary classification. The second model obtains a binary classification AUC of 0.9563 and a multiclass classification AUC of 0.968. The suggested models perform better than both the standard learners and state-of-the-art and state-of-the-art methods.
基于不同融合技术的胸部x线图像的covid-19大流行分类集成深度模型
一种名为冠状病毒(COVID-19)的大流行已经影响了世界各地的人们。放射科医生可以通过胸部x光片直观地检测冠状病毒感染。本研究探讨了基于胸部x光片对COVID-19患者进行分类的两种方法:纯深度学习和传统机器学习。在第一个模型中,三个深度学习分类器的决策使用两种不同的决策融合策略(多数投票和贝叶斯最优)进行组合。为了提高分类性能,第二种模型融合了决策和特征融合的思想。利用融合过程,来自深度学习模型的特征向量生成特征集。然后使用投票分类器对传统机器学习分类器的分类指标进行优化。在诊断二元分类和多类分类时,第一种模型的性能优于第二种模型。第一个模型的多类分类AUC为0.998,二类分类AUC为0.9755。第二个模型的二元分类AUC为0.9563,多类分类AUC为0.968。建议的模型比标准学习器和最先进的最先进的方法都表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Advances in Intelligent Informatics
International Journal of Advances in Intelligent Informatics Computer Science-Computer Vision and Pattern Recognition
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信