{"title":"Weak solutions for fractional p(x,·)-Laplacian Dirichlet problems with weight","authors":"M. Ait Hammou","doi":"10.1515/anly-2021-1007","DOIUrl":null,"url":null,"abstract":"Abstract The main purpose of this paper is to show the existence of weak solutions for a problem involving the fractional p ( x , ⋅ ) {p(x,\\cdot\\,)} -Laplacian operator of the following form: { ( - Δ p ( x , ⋅ ) ) s u ( x ) + w ( x ) | u | p ¯ ( x ) - 2 u = λ f ( x , u ) in Ω , u = 0 in ℝ N ∖ Ω , \\left\\{\\begin{aligned} \\displaystyle(-\\Delta_{p(x,\\cdot\\,)})^{s}u(x)+w(x)% \\lvert u\\rvert^{\\bar{p}(x)-2}u&\\displaystyle=\\lambda f(x,u)&&\\displaystyle% \\phantom{}\\text{in }\\Omega,\\\\ \\displaystyle u&\\displaystyle=0&&\\displaystyle\\phantom{}\\text{in }\\mathbb{R}^{% N}\\setminus\\Omega,\\end{aligned}\\right. The main tool used for this purpose is the Berkovits topological degree.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"110 1","pages":"121 - 132"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2021-1007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The main purpose of this paper is to show the existence of weak solutions for a problem involving the fractional p ( x , ⋅ ) {p(x,\cdot\,)} -Laplacian operator of the following form: { ( - Δ p ( x , ⋅ ) ) s u ( x ) + w ( x ) | u | p ¯ ( x ) - 2 u = λ f ( x , u ) in Ω , u = 0 in ℝ N ∖ Ω , \left\{\begin{aligned} \displaystyle(-\Delta_{p(x,\cdot\,)})^{s}u(x)+w(x)% \lvert u\rvert^{\bar{p}(x)-2}u&\displaystyle=\lambda f(x,u)&&\displaystyle% \phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{in }\mathbb{R}^{% N}\setminus\Omega,\end{aligned}\right. The main tool used for this purpose is the Berkovits topological degree.