M. Shavezipur, W. S. Lee, K. Harrison, J. Provine, S. Mitra, H. Wong, R. Howe
{"title":"Laterally actuated nanoelectromechanical relays with compliant, low resistance contact","authors":"M. Shavezipur, W. S. Lee, K. Harrison, J. Provine, S. Mitra, H. Wong, R. Howe","doi":"10.1109/MEMSYS.2013.6474293","DOIUrl":null,"url":null,"abstract":"Laterally actuated nanoelectromechanical relays with compliant source-drain contacts are presented. The relay sidewalls are coated with a 30 nm-thick conductive layer of titanium nitride (TiN) deposited using atomic layer deposition (ALD). By hollowing the tip of the relay, a flexible sidewall is formed from the thin TiN that results in a larger contact area and therefore improves the contact properties of the relay. This modification improves the on-state resistance (RON) and also provides better stability over a larger number of switching cycles compared to a rigid contact. The results of life-time tests show that the contact resistance increases with the number of switching cycles possibly due to degradation of the contact material. However, flexible contacts show improved contact resistance stability under cyclic contact.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":"356 1","pages":"520-523"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Laterally actuated nanoelectromechanical relays with compliant source-drain contacts are presented. The relay sidewalls are coated with a 30 nm-thick conductive layer of titanium nitride (TiN) deposited using atomic layer deposition (ALD). By hollowing the tip of the relay, a flexible sidewall is formed from the thin TiN that results in a larger contact area and therefore improves the contact properties of the relay. This modification improves the on-state resistance (RON) and also provides better stability over a larger number of switching cycles compared to a rigid contact. The results of life-time tests show that the contact resistance increases with the number of switching cycles possibly due to degradation of the contact material. However, flexible contacts show improved contact resistance stability under cyclic contact.