A High-Quality and Fast Maximal Independent Set Implementation for GPUs

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Martin Burtscher, Sindhu Devale, S. Azimi, J. Jaiganesh, Evan Powers
{"title":"A High-Quality and Fast Maximal Independent Set Implementation for GPUs","authors":"Martin Burtscher, Sindhu Devale, S. Azimi, J. Jaiganesh, Evan Powers","doi":"10.1145/3291525","DOIUrl":null,"url":null,"abstract":"Computing a maximal independent set is an important step in many parallel graph algorithms. This article introduces ECL-MIS, a maximal independent set implementation that works well on GPUs. It includes key optimizations to speed up computation, reduce the memory footprint, and increase the set size. Its CUDA implementation requires fewer than 30 kernel statements, runs asynchronously, and produces a deterministic result. It outperforms the maximal independent set implementations of Pannotia, CUSP, and IrGL on each of the 16 tested graphs of various types and sizes. On a Titan X GPU, ECL-MIS is between 3.9 and 100 times faster (11.5 times, on average). ECL-MIS running on the GPU is also faster than the parallel CPU codes Ligra, Ligra+, and PBBS running on 20 Xeon cores, which it outperforms by 4.1 times, on average. At the same time, ECL-MIS produces maximal independent sets that are up to 52% larger (over 10%, on average) compared to these preexisting CPU and GPU implementations. Whereas these codes produce maximal independent sets that are, on average, about 15% smaller than the largest possible such sets, ECL-MIS sets are less than 6% smaller than the maximum independent sets.","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"26 1","pages":"8:1-8:27"},"PeriodicalIF":0.9000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3291525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 9

Abstract

Computing a maximal independent set is an important step in many parallel graph algorithms. This article introduces ECL-MIS, a maximal independent set implementation that works well on GPUs. It includes key optimizations to speed up computation, reduce the memory footprint, and increase the set size. Its CUDA implementation requires fewer than 30 kernel statements, runs asynchronously, and produces a deterministic result. It outperforms the maximal independent set implementations of Pannotia, CUSP, and IrGL on each of the 16 tested graphs of various types and sizes. On a Titan X GPU, ECL-MIS is between 3.9 and 100 times faster (11.5 times, on average). ECL-MIS running on the GPU is also faster than the parallel CPU codes Ligra, Ligra+, and PBBS running on 20 Xeon cores, which it outperforms by 4.1 times, on average. At the same time, ECL-MIS produces maximal independent sets that are up to 52% larger (over 10%, on average) compared to these preexisting CPU and GPU implementations. Whereas these codes produce maximal independent sets that are, on average, about 15% smaller than the largest possible such sets, ECL-MIS sets are less than 6% smaller than the maximum independent sets.
一种高质量、快速的gpu最大独立集实现
计算极大独立集是许多并行图算法的重要步骤。本文介绍了ECL-MIS,一个在gpu上运行良好的最大独立集实现。它包括加速计算、减少内存占用和增加集合大小的关键优化。它的CUDA实现需要少于30个内核语句,异步运行,并产生确定性结果。在16个不同类型和大小的测试图上,它的性能都优于Pannotia、CUSP和IrGL的最大独立集实现。在Titan X GPU上,ECL-MIS的速度在3.9到100倍之间(平均11.5倍)。在GPU上运行的ECL-MIS也比在20至强核上运行的并行CPU代码Ligra, Ligra+和PBBS快,平均性能高出4.1倍。与此同时,ECL-MIS产生的最大独立集比这些现有的CPU和GPU实现大52%(平均超过10%)。尽管这些代码产生的最大独立集平均比最大可能的独立集小15%左右,但ECL-MIS集比最大独立集小不到6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.10
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信