Analysis of the single-regime speed-density fundamental relationships for varying spatiotemporal resolution using Zen Traffic Data

Garima Dahiya, Yasuo Asakura, Wataru Nakanishi
{"title":"Analysis of the single-regime speed-density fundamental relationships for varying spatiotemporal resolution using Zen Traffic Data","authors":"Garima Dahiya,&nbsp;Yasuo Asakura,&nbsp;Wataru Nakanishi","doi":"10.1016/j.eastsj.2022.100066","DOIUrl":null,"url":null,"abstract":"<div><p>This study analyzed the single-regime speed-density (<em>v-k</em>) relationships for urban expressways using high resolution Zen Traffic Data (ZTD) containing all vehicles’ trajectory data obtained using image sensing technology. The steady-state traffic data were extracted for varying spatiotemporal resolutions, followed by estimation of traffic flow parameters, namely, jam density, kinematic-wave-speed, and proportionality factor, a behavioral parameter, using empirical data. Functional and shape parameters were estimated using the Levenberg–Marquardt algorithm. Statistical metrics were used to assess the performance and model fitness in all categories of linear, exponential and logarithmic, and complex forms of <em>v-k</em> relationships for different resolutions. The theoretical analysis revealed that certain relationships satisfy all the static properties and that only one satisfies both the dynamic properties of traffic behavior. Highly parameterized forms had the lowest errors. However, the linear form of model developed by May and Keller has high application potential.</p></div>","PeriodicalId":100131,"journal":{"name":"Asian Transport Studies","volume":"8 ","pages":"Article 100066"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2185556022000128/pdfft?md5=4ab3d9f56e775bb9666be9c14fd16d10&pid=1-s2.0-S2185556022000128-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Transport Studies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2185556022000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study analyzed the single-regime speed-density (v-k) relationships for urban expressways using high resolution Zen Traffic Data (ZTD) containing all vehicles’ trajectory data obtained using image sensing technology. The steady-state traffic data were extracted for varying spatiotemporal resolutions, followed by estimation of traffic flow parameters, namely, jam density, kinematic-wave-speed, and proportionality factor, a behavioral parameter, using empirical data. Functional and shape parameters were estimated using the Levenberg–Marquardt algorithm. Statistical metrics were used to assess the performance and model fitness in all categories of linear, exponential and logarithmic, and complex forms of v-k relationships for different resolutions. The theoretical analysis revealed that certain relationships satisfy all the static properties and that only one satisfies both the dynamic properties of traffic behavior. Highly parameterized forms had the lowest errors. However, the linear form of model developed by May and Keller has high application potential.

基于Zen交通数据的时空分辨率变化单区速度-密度基本关系分析
本研究利用高分辨率Zen交通数据(ZTD)分析了城市高速公路的单时段速度-密度(v-k)关系,该数据包含了使用图像传感技术获得的所有车辆的轨迹数据。提取不同时空分辨率的稳态交通数据,然后利用经验数据估计交通流参数,即拥堵密度、运动波速和行为参数比例因子。利用Levenberg-Marquardt算法估计了功能参数和形状参数。使用统计度量来评估不同分辨率下所有类别的线性、指数和对数以及v-k关系的复杂形式的性能和模型适应度。理论分析表明,某些关系满足交通行为的所有静态特性,只有一种关系同时满足交通行为的动态特性。高度参数化的表单误差最小。然而,May和Keller开发的线性形式的模型具有很高的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信