Unbiased Modified Two-Parameter Estimator for the Linear Regression Model

A. O. Abidoye, I. M. Ajayi, F. L. Adewale, J. O. Ogunjobi
{"title":"Unbiased Modified Two-Parameter Estimator for the Linear Regression Model","authors":"A. O. Abidoye, I. M. Ajayi, F. L. Adewale, J. O. Ogunjobi","doi":"10.3329/jsr.v14i3.58234","DOIUrl":null,"url":null,"abstract":"This study centers on estimating parameters in a linear regression model in the presence of multicollinearity. Multicollinearity poses a threat to the efficiency of the Ordinary Least Squares (OLS) estimator. Some alternative estimators have been developed as remedial measures to the earlier mentioned problem. This study introduces a new unbiased modified two-parameter estimator based on prior information. Its properties are also considered; the new estimator was compared with other estimators’ Mean Square Error (MSE). A numerical example and Monte Carlo simulation were used to illustrate the performance of the new estimator.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jsr.v14i3.58234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study centers on estimating parameters in a linear regression model in the presence of multicollinearity. Multicollinearity poses a threat to the efficiency of the Ordinary Least Squares (OLS) estimator. Some alternative estimators have been developed as remedial measures to the earlier mentioned problem. This study introduces a new unbiased modified two-parameter estimator based on prior information. Its properties are also considered; the new estimator was compared with other estimators’ Mean Square Error (MSE). A numerical example and Monte Carlo simulation were used to illustrate the performance of the new estimator.
线性回归模型的无偏修正双参数估计
本文主要研究多重共线性下线性回归模型的参数估计问题。多重共线性对普通最小二乘(OLS)估计的有效性造成了威胁。已经开发了一些替代估算器,作为对前面提到的问题的补救措施。提出了一种新的基于先验信息的无偏修正双参数估计器。它的性质也被考虑;将新估计量与其他估计量的均方误差(MSE)进行比较。通过数值算例和蒙特卡罗仿真验证了该估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
47
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信