{"title":"On the converse of Gaschütz’ complement theorem","authors":"Benjamin Sambale","doi":"10.1515/jgth-2022-0178","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝑁 be a normal subgroup of a finite group 𝐺. Let N ≤ H ≤ G N\\leq H\\leq G such that 𝑁 has a complement in 𝐻 and ( | N | , | G : H | ) = 1 (\\lvert N\\rvert,\\lvert G:H\\rvert)=1 . If 𝑁 is abelian, a theorem of Gaschütz asserts that 𝑁 has a complement in 𝐺 as well. Brandis has asked whether the commutativity of 𝑁 can be replaced by some weaker property. We prove that 𝑁 has a complement in 𝐺 whenever all Sylow subgroups of 𝑁 are abelian. On the other hand, we construct counterexamples if Z ( N ) ∩ N ′ ≠ 1 \\mathrm{Z}(N)\\cap N^{\\prime}\\neq 1 . For metabelian groups 𝑁, the condition Z ( N ) ∩ N ′ = 1 \\mathrm{Z}(N)\\cap N^{\\prime}=1 implies the existence of complements. Finally, if 𝑁 is perfect and centerless, then Gaschütz’ theorem holds for 𝑁 if and only if Inn ( N ) \\mathrm{Inn}(N) has a complement in Aut ( N ) \\mathrm{Aut}(N) .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Let 𝑁 be a normal subgroup of a finite group 𝐺. Let N ≤ H ≤ G N\leq H\leq G such that 𝑁 has a complement in 𝐻 and ( | N | , | G : H | ) = 1 (\lvert N\rvert,\lvert G:H\rvert)=1 . If 𝑁 is abelian, a theorem of Gaschütz asserts that 𝑁 has a complement in 𝐺 as well. Brandis has asked whether the commutativity of 𝑁 can be replaced by some weaker property. We prove that 𝑁 has a complement in 𝐺 whenever all Sylow subgroups of 𝑁 are abelian. On the other hand, we construct counterexamples if Z ( N ) ∩ N ′ ≠ 1 \mathrm{Z}(N)\cap N^{\prime}\neq 1 . For metabelian groups 𝑁, the condition Z ( N ) ∩ N ′ = 1 \mathrm{Z}(N)\cap N^{\prime}=1 implies the existence of complements. Finally, if 𝑁 is perfect and centerless, then Gaschütz’ theorem holds for 𝑁 if and only if Inn ( N ) \mathrm{Inn}(N) has a complement in Aut ( N ) \mathrm{Aut}(N) .