{"title":"Proof of a Conjecture Involving Derangements and Roots of Unity","authors":"H. Wang, Zhi-Wei Sun","doi":"10.37236/11377","DOIUrl":null,"url":null,"abstract":"Let $n>1$ be an odd integer, and let $\\zeta$ be a primitive $n$th root of unity in the complex field. Via the Eigenvector-eigenvalue Identity, we show that$$\\sum_{\\tau\\in D(n-1)}\\mathrm{sign}(\\tau)\\prod_{j=1}^{n-1}\\frac{1+\\zeta^{j-\\tau(j)}}{1-\\zeta^{j-\\tau(j)}}=(-1)^{\\frac{n-1}{2}}\\frac{((n-2)!!)^2}{n},$$where $D(n-1)$ is the set of all derangements of $1,\\ldots,n-1$.This confirms a previous conjecture of Z.-W. Sun. Moreover, for each $\\delta=0,1$ we determine the value of $\\det[x+m_{jk}]_{1\\leqslant j,k\\leqslant n-1}$ completely, where$$m_{jk}=\\begin{cases}(1+\\zeta^{j-k})/(1-\\zeta^{j-k})&\\text{if}\\ j\\not=k,\\\\\\delta&\\text{if}\\ j=k.\\end{cases}$$","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"18 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11377","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Let $n>1$ be an odd integer, and let $\zeta$ be a primitive $n$th root of unity in the complex field. Via the Eigenvector-eigenvalue Identity, we show that$$\sum_{\tau\in D(n-1)}\mathrm{sign}(\tau)\prod_{j=1}^{n-1}\frac{1+\zeta^{j-\tau(j)}}{1-\zeta^{j-\tau(j)}}=(-1)^{\frac{n-1}{2}}\frac{((n-2)!!)^2}{n},$$where $D(n-1)$ is the set of all derangements of $1,\ldots,n-1$.This confirms a previous conjecture of Z.-W. Sun. Moreover, for each $\delta=0,1$ we determine the value of $\det[x+m_{jk}]_{1\leqslant j,k\leqslant n-1}$ completely, where$$m_{jk}=\begin{cases}(1+\zeta^{j-k})/(1-\zeta^{j-k})&\text{if}\ j\not=k,\\\delta&\text{if}\ j=k.\end{cases}$$
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.