Resource Constrained, Fast Convergence Training for Violence Detection in Video Streams

Catalin Vladu, L. Prodan, A. Iovanovici
{"title":"Resource Constrained, Fast Convergence Training for Violence Detection in Video Streams","authors":"Catalin Vladu, L. Prodan, A. Iovanovici","doi":"10.1109/CINTI-MACRo57952.2022.10029428","DOIUrl":null,"url":null,"abstract":"This paper addresses the automated identification of violent acts from CCTV video streams using a Deep Learning model under constrained resources. While this process typically involves a powerful setup, it is useful to accelerate the training and get accurate results using more modest computational resources that would bring automatic recognition of violent acts closer to common surveillance resources. Our results provide 94.98% accuracy, on par with the state-of-the-art, but at a fraction of the training time. This translates into lower energy requirements and allows a broader deployment on large scale (urban) autonomous surveillance networks while providing an increased privacy towards citizens and lower chances of abuse from authorities.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"6 1","pages":"000239-000244"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the automated identification of violent acts from CCTV video streams using a Deep Learning model under constrained resources. While this process typically involves a powerful setup, it is useful to accelerate the training and get accurate results using more modest computational resources that would bring automatic recognition of violent acts closer to common surveillance resources. Our results provide 94.98% accuracy, on par with the state-of-the-art, but at a fraction of the training time. This translates into lower energy requirements and allows a broader deployment on large scale (urban) autonomous surveillance networks while providing an increased privacy towards citizens and lower chances of abuse from authorities.
基于资源约束的视频流暴力检测快速收敛训练
本文利用有限资源下的深度学习模型解决了CCTV视频流中暴力行为的自动识别问题。虽然这个过程通常需要一个强大的设置,但使用更适度的计算资源来加速训练并获得准确的结果是有用的,这将使暴力行为的自动识别更接近常见的监视资源。我们的结果提供了94.98%的准确率,与最先进的技术相当,但只需要一小部分训练时间。这意味着更低的能源需求,并允许在大规模(城市)自主监控网络上进行更广泛的部署,同时为公民提供更多的隐私,降低当局滥用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信