Hydrogen Concentration and Hydrides in Zircaloy-4 During Cyclic Thermomechanical Loading

Yang Liu, Said El Chamaa, M. Wenman, C. Davies, F. Dunne
{"title":"Hydrogen Concentration and Hydrides in Zircaloy-4 During Cyclic Thermomechanical Loading","authors":"Yang Liu, Said El Chamaa, M. Wenman, C. Davies, F. Dunne","doi":"10.2139/ssrn.3828268","DOIUrl":null,"url":null,"abstract":"Hydride formation in zircaloy-4 under cyclic thermomechanical loading has been investigated using characterized notched beam samples in four-point beam testing, and microstructurally-representative crystal plasticity modelling of the beam tests which incorporates an atomistically-informed thermodynamically-equilibrium model for hydrogen concentration. The model provided the locations within the microstructure of high hydrogen content, above that required for saturation, hence predicting the anticipated locations of hydride observations in the experiments. The strain rate sensitivity of this alloy over the temperature range considered led to considerable intragranular slip and corresponding stress redistribution, and cyclic strain ratcheting leading to high hydrostatic stresses and in turn hydrogen concentrations, which explains the locations of experimentally observed hydride formation. The interstitial hydrogen interaction energy as well as the intragranular geometrically necessary dislocation density were shown to be important in controlling the spatial distributions of observed hydrides.","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3828268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Hydride formation in zircaloy-4 under cyclic thermomechanical loading has been investigated using characterized notched beam samples in four-point beam testing, and microstructurally-representative crystal plasticity modelling of the beam tests which incorporates an atomistically-informed thermodynamically-equilibrium model for hydrogen concentration. The model provided the locations within the microstructure of high hydrogen content, above that required for saturation, hence predicting the anticipated locations of hydride observations in the experiments. The strain rate sensitivity of this alloy over the temperature range considered led to considerable intragranular slip and corresponding stress redistribution, and cyclic strain ratcheting leading to high hydrostatic stresses and in turn hydrogen concentrations, which explains the locations of experimentally observed hydride formation. The interstitial hydrogen interaction energy as well as the intragranular geometrically necessary dislocation density were shown to be important in controlling the spatial distributions of observed hydrides.
循环热机械加载过程中锆合金-4中的氢浓度和氢化物
在循环热力学载荷下,利用四点梁测试中的特征缺口梁样品研究了锆合金-4中的氢化物形成,并对梁测试的微结构代表性晶体塑性建模进行了研究,该模型包含了氢浓度的原子动态热力学平衡模型。该模型提供了微观结构内高氢含量的位置,高于饱和所需的位置,从而预测了实验中氢化物观测的预期位置。该合金在考虑的温度范围内的应变速率敏感性导致了相当大的晶内滑移和相应的应力重新分布,循环应变棘轮导致高静水应力和氢浓度,这解释了实验观察到的氢化物形成的位置。间隙氢相互作用能和晶内几何上必需的位错密度对控制观察到的氢化物的空间分布很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信