{"title":"Overcoming harmonic hurdles: Genuine beta-band rhythms vs. contributions of alpha-band waveform shape","authors":"N. Schaworonkow","doi":"10.1162/imag_a_00018","DOIUrl":null,"url":null,"abstract":"Abstract Beta-band activity in the human cortex as recorded with noninvasive electrophysiology is of diverse origin. In addition to genuine beta-rhythms, there are numerous nonsinusoidal alpha-band rhythms present in the human brain, which will result in harmonic beta-band peaks. This type of activity has different temporal and response dynamics than genuine beta-rhythms. Here, it is argued that in the analysis of higher-frequency rhythms, the relationship to lower-frequency rhythms needs to be clarified. Only in that way we can arrive at strong, methodologically valid interpretations of potential functional roles and generative mechanisms of neural oscillations.","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"41 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/imag_a_00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Beta-band activity in the human cortex as recorded with noninvasive electrophysiology is of diverse origin. In addition to genuine beta-rhythms, there are numerous nonsinusoidal alpha-band rhythms present in the human brain, which will result in harmonic beta-band peaks. This type of activity has different temporal and response dynamics than genuine beta-rhythms. Here, it is argued that in the analysis of higher-frequency rhythms, the relationship to lower-frequency rhythms needs to be clarified. Only in that way we can arrive at strong, methodologically valid interpretations of potential functional roles and generative mechanisms of neural oscillations.