{"title":"A multi-parameter family of metrics on stiefel manifolds and applications","authors":"Markus Schlarb","doi":"10.3934/jgm.2023008","DOIUrl":null,"url":null,"abstract":"The real (compact) Stiefel manifold realized as set of orthonormal frames is considered as a pseudo-Riemannian submanifold of an open subset of a vector space equipped with a multi-parameter family of pseudo-Riemannian metrics. This family contains several well-known metrics from the literature. Explicit matrix-type formulas for various differential geometric quantities are derived. The orthogonal projections onto tangent spaces are determined. Moreover, by computing the metric spray, the geodesic equation as an explicit second order matrix valued ODE is obtained. In addition, for a multi-parameter subfamily, explicit matrix-type formulas for pseudo-Riemannian gradients and pseudo-Riemannian Hessians are derived. Furthermore, an explicit expression for the second fundamental form and an explicit formula for the Levi-Civita covariant derivative are obtained. Detailed proofs are included.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2023008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The real (compact) Stiefel manifold realized as set of orthonormal frames is considered as a pseudo-Riemannian submanifold of an open subset of a vector space equipped with a multi-parameter family of pseudo-Riemannian metrics. This family contains several well-known metrics from the literature. Explicit matrix-type formulas for various differential geometric quantities are derived. The orthogonal projections onto tangent spaces are determined. Moreover, by computing the metric spray, the geodesic equation as an explicit second order matrix valued ODE is obtained. In addition, for a multi-parameter subfamily, explicit matrix-type formulas for pseudo-Riemannian gradients and pseudo-Riemannian Hessians are derived. Furthermore, an explicit expression for the second fundamental form and an explicit formula for the Levi-Civita covariant derivative are obtained. Detailed proofs are included.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.