A multi-parameter family of metrics on stiefel manifolds and applications

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Markus Schlarb
{"title":"A multi-parameter family of metrics on stiefel manifolds and applications","authors":"Markus Schlarb","doi":"10.3934/jgm.2023008","DOIUrl":null,"url":null,"abstract":"The real (compact) Stiefel manifold realized as set of orthonormal frames is considered as a pseudo-Riemannian submanifold of an open subset of a vector space equipped with a multi-parameter family of pseudo-Riemannian metrics. This family contains several well-known metrics from the literature. Explicit matrix-type formulas for various differential geometric quantities are derived. The orthogonal projections onto tangent spaces are determined. Moreover, by computing the metric spray, the geodesic equation as an explicit second order matrix valued ODE is obtained. In addition, for a multi-parameter subfamily, explicit matrix-type formulas for pseudo-Riemannian gradients and pseudo-Riemannian Hessians are derived. Furthermore, an explicit expression for the second fundamental form and an explicit formula for the Levi-Civita covariant derivative are obtained. Detailed proofs are included.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2023008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The real (compact) Stiefel manifold realized as set of orthonormal frames is considered as a pseudo-Riemannian submanifold of an open subset of a vector space equipped with a multi-parameter family of pseudo-Riemannian metrics. This family contains several well-known metrics from the literature. Explicit matrix-type formulas for various differential geometric quantities are derived. The orthogonal projections onto tangent spaces are determined. Moreover, by computing the metric spray, the geodesic equation as an explicit second order matrix valued ODE is obtained. In addition, for a multi-parameter subfamily, explicit matrix-type formulas for pseudo-Riemannian gradients and pseudo-Riemannian Hessians are derived. Furthermore, an explicit expression for the second fundamental form and an explicit formula for the Levi-Civita covariant derivative are obtained. Detailed proofs are included.
stifel流形上的多参数度量族及其应用
将实(紧)Stiefel流形看作具有多参数伪黎曼度量族的矢量空间开子集的伪黎曼子流形。这个家族包含了文献中几个著名的度量。导出了各种微分几何量的显式矩阵型公式。确定了切空间上的正交投影。此外,通过计算度量喷雾,得到了显式二阶矩阵值ODE的测地线方程。此外,对于多参数子族,导出了伪黎曼梯度和伪黎曼Hessians的显式矩阵型公式。进一步得到了第二种基本形式的显式表达式和列维-奇维塔协变导数的显式表达式。详细的证明包括在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信