A Module-level Weathering and Durability Testing on Silver Nanowire Transparent Conductors

Chiao-Chi Lin, Bo-Ju You, Yu-Xuan Yang, I. Tseng
{"title":"A Module-level Weathering and Durability Testing on Silver Nanowire Transparent Conductors","authors":"Chiao-Chi Lin, Bo-Ju You, Yu-Xuan Yang, I. Tseng","doi":"10.1109/NEMS50311.2020.9265599","DOIUrl":null,"url":null,"abstract":"We adopt a pseudo-module methodology for investigating the degradation behaviors of silver nanowire (AgNW) transparent conductors (TC). The pseudo-module allows assembly and disassembly for accessing TC during aging test without causing artificial damage to the AgNWs. Aging tests on the AgNWs inside pseudo-module were performed under ultraviolet (UV) irradiation at elevated temperature and damp heat conditions. There was no deterioration concerning electrical DC conductivity for both UVA/75ºC and damp heat aging conditions after aging for 69 days and 100 days, respectively. However, microscopy and spectroscopy results indicated that damp heat aging resulted in significant damage to the morphologies of AgNWs, inferring the importance of encapsulation to the stability of pristine AgNWs inside modules. Morphological and junctional change of AgNWs networks caused the decrease in optical transmittance of TC. The UVA/75ºC aging results showed early sign of sulfidation after aging for 100 days. Electrical stress tests by applying stepwise current were conducted. The failure mode of both pristine AgNW TC and AgNW TC inside pseudo-module were identical. However, the AgNW TC inside pseudo-module generated higher heating temperature. Preliminary outdoor exposure has been conducted by our research team, and comprehensive investigation will be carried out in the near future.","PeriodicalId":6787,"journal":{"name":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","volume":"27 1","pages":"9-13"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS50311.2020.9265599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We adopt a pseudo-module methodology for investigating the degradation behaviors of silver nanowire (AgNW) transparent conductors (TC). The pseudo-module allows assembly and disassembly for accessing TC during aging test without causing artificial damage to the AgNWs. Aging tests on the AgNWs inside pseudo-module were performed under ultraviolet (UV) irradiation at elevated temperature and damp heat conditions. There was no deterioration concerning electrical DC conductivity for both UVA/75ºC and damp heat aging conditions after aging for 69 days and 100 days, respectively. However, microscopy and spectroscopy results indicated that damp heat aging resulted in significant damage to the morphologies of AgNWs, inferring the importance of encapsulation to the stability of pristine AgNWs inside modules. Morphological and junctional change of AgNWs networks caused the decrease in optical transmittance of TC. The UVA/75ºC aging results showed early sign of sulfidation after aging for 100 days. Electrical stress tests by applying stepwise current were conducted. The failure mode of both pristine AgNW TC and AgNW TC inside pseudo-module were identical. However, the AgNW TC inside pseudo-module generated higher heating temperature. Preliminary outdoor exposure has been conducted by our research team, and comprehensive investigation will be carried out in the near future.
银纳米线透明导体的模块级耐候性和耐久性测试
我们采用伪模块方法来研究银纳米线透明导体(TC)的降解行为。伪模块允许在老化试验期间组装和拆卸访问TC,而不会对AgNWs造成人为损坏。在高温和湿热条件下,对假模块内部的AgNWs进行了紫外线照射老化试验。在UVA/75ºC和湿热老化条件下,分别老化69天和100天后,直流电导电性没有下降。然而,显微镜和光谱学结果表明,湿热老化对AgNWs的形态造成了明显的破坏,这推断了封装对模块内原始AgNWs稳定性的重要性。AgNWs网络形态和连接的改变导致TC的透光率下降。UVA/75ºC陈化100天后,结果显示有早期硫化迹象。采用逐级电流法进行了应力测试。原始AgNW TC和伪模块内AgNW TC的失效模式完全相同。然而,伪模块内部的AgNW TC产生了更高的加热温度。我们的研究团队已经进行了初步的室外暴露,并将在近期进行全面的调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信