Artificial Neural Network Modeling for Al-Zn-Sn Sacrificial Anode protection of Low Carbon Steel in Saline Media

O. Oluwole, N. Idusuyi
{"title":"Artificial Neural Network Modeling for Al-Zn-Sn Sacrificial Anode protection of Low Carbon Steel in Saline Media","authors":"O. Oluwole, N. Idusuyi","doi":"10.5923/J.MATERIALS.20120203.05","DOIUrl":null,"url":null,"abstract":"This work presents the artificial neural network(ANN) modeling for sacrificial anode cathodic protection of low carbon steel using Al-Zn-Sn alloys anodes in saline media. Corrosion experiments were used to obtain data for developing a neural network model. The Feed forward Levenberg-Marquadt training algorithm with passive time, pH, conductivity,% metallic composition used in the input layer and the corrosion potential measured against a silver/silver chloride(Ag/AgCl) reference electrode used as the target or output variable. The modeling results obtained show that the network with 4 neurons in the input layer, 10 neurons in the hidden layer and 1 neuron in the output layer had a high correlation coefficient (R-value) of 0.850602 for the test data, and a low mean square error (MSE) of 0.0261294. 9","PeriodicalId":7420,"journal":{"name":"American Journal of Materials Science","volume":"63 2 1","pages":"62-65"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.MATERIALS.20120203.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work presents the artificial neural network(ANN) modeling for sacrificial anode cathodic protection of low carbon steel using Al-Zn-Sn alloys anodes in saline media. Corrosion experiments were used to obtain data for developing a neural network model. The Feed forward Levenberg-Marquadt training algorithm with passive time, pH, conductivity,% metallic composition used in the input layer and the corrosion potential measured against a silver/silver chloride(Ag/AgCl) reference electrode used as the target or output variable. The modeling results obtained show that the network with 4 neurons in the input layer, 10 neurons in the hidden layer and 1 neuron in the output layer had a high correlation coefficient (R-value) of 0.850602 for the test data, and a low mean square error (MSE) of 0.0261294. 9
盐水介质中低碳钢Al-Zn-Sn牺牲阳极保护的人工神经网络建模
本文提出了用Al-Zn-Sn合金阳极在盐水介质中进行低碳钢牺牲阳极阴极保护的人工神经网络(ANN)建模。利用腐蚀实验获取数据,建立神经网络模型。前馈Levenberg-Marquadt训练算法采用被动时间、pH值、电导率、输入层中使用的金属成分百分比以及对银/氯化银(Ag/AgCl)参考电极作为目标或输出变量测量的腐蚀电位。建模结果表明,输入层4个神经元,隐藏层10个神经元,输出层1个神经元的网络与测试数据的相关系数(r值)较高,为0.850602,均方误差(MSE)较低,为0.0261294。9
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信