A modified Neyman-Pearson technique for radiodense tissue estimation in digitized mammograms

J. Neyhart, R.E. Eckert, R. Polikar, S. Mandayam, M. Tseng
{"title":"A modified Neyman-Pearson technique for radiodense tissue estimation in digitized mammograms","authors":"J. Neyhart, R.E. Eckert, R. Polikar, S. Mandayam, M. Tseng","doi":"10.1109/IEMBS.2002.1106243","DOIUrl":null,"url":null,"abstract":"The percentage of radiodense tissue in the breast has been shown to be a reliable marker for breast cancer risk. In this paper, we present an image processing technique for estimating radiodense tissue in digitized mammograms. First, the mammogram is segmented into tissue and nontissue regions. This segmentation process involves the generation of a segmentation mask that is developed using a radial basis function neural network. Subsequently, the image is processed for estimating the amount of radiodense tissue. The estimation process involves the generation of a modified Neyman-Pearson threshold to segment the radiodense and radiolucent tissue. Typical research results are presented-these have been independently validated by a radiologist.","PeriodicalId":60385,"journal":{"name":"中国地球物理学会年刊","volume":"8 1","pages":"995-996 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国地球物理学会年刊","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/IEMBS.2002.1106243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The percentage of radiodense tissue in the breast has been shown to be a reliable marker for breast cancer risk. In this paper, we present an image processing technique for estimating radiodense tissue in digitized mammograms. First, the mammogram is segmented into tissue and nontissue regions. This segmentation process involves the generation of a segmentation mask that is developed using a radial basis function neural network. Subsequently, the image is processed for estimating the amount of radiodense tissue. The estimation process involves the generation of a modified Neyman-Pearson threshold to segment the radiodense and radiolucent tissue. Typical research results are presented-these have been independently validated by a radiologist.
一种改进的奈曼-皮尔逊技术用于数字化乳房x光片中放射性致密组织的估计
乳腺中放射性致密组织的百分比已被证明是乳腺癌风险的可靠标志。在本文中,我们提出了一种图像处理技术,用于估计数字化乳房x线照片中的放射性致密组织。首先,乳房x光片被分割成组织区域和非组织区域。该分割过程涉及到使用径向基函数神经网络开发的分割掩码的生成。随后,对图像进行处理以估计放射致密组织的数量。估计过程包括产生一个改进的内曼-皮尔逊阈值来分割放射密集和放射透光组织。典型的研究结果提出,这些已经独立验证了放射科医生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
368
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信