Andrea Bizzarri, Alberto Petri, Andrea Baldassarri
{"title":"Earthquake dynamics constrained from laboratory experiments: new insights from granular materials","authors":"Andrea Bizzarri, Alberto Petri, Andrea Baldassarri","doi":"10.4401/ag-8613","DOIUrl":null,"url":null,"abstract":"The traction evolution is a fundamental ingredient to model the dynamics of an earthquake rupture which ultimately controls, during the coseismic phase, the energy release, the stress redistribution and the consequent excitation of seismic waves. In the present paper we explore the use of the friction behavior derived from laboratory shear experiments performed on granular materials at low normal stress. We find that the rheological properties emerging from these laboratory experiments can not be described in terms of preexisting governing models already presented in literature; our results indicate that neither rate–and state–dependent friction laws nor nonlinear slip–dependent models, commonly adopted for modeling earthquake ruptures, are able to capture all the features of the experimental data. Then, by exploiting a novel numerical approach, we directly incorporate the laboratory data into a code to simulate the fully dynamic propagation of a 3–D slip failure. We demonstrate that the rheology of the granular material, imposed as fault boundary condition, is dynamically consistent. Indeed, it is able to reproduce the basic features of a crustal earthquake, spontaneously accelerating up to some terminal rupture speed, both sub– and supershear.","PeriodicalId":50766,"journal":{"name":"Annals of Geophysics","volume":"42 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4401/ag-8613","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3
Abstract
The traction evolution is a fundamental ingredient to model the dynamics of an earthquake rupture which ultimately controls, during the coseismic phase, the energy release, the stress redistribution and the consequent excitation of seismic waves. In the present paper we explore the use of the friction behavior derived from laboratory shear experiments performed on granular materials at low normal stress. We find that the rheological properties emerging from these laboratory experiments can not be described in terms of preexisting governing models already presented in literature; our results indicate that neither rate–and state–dependent friction laws nor nonlinear slip–dependent models, commonly adopted for modeling earthquake ruptures, are able to capture all the features of the experimental data. Then, by exploiting a novel numerical approach, we directly incorporate the laboratory data into a code to simulate the fully dynamic propagation of a 3–D slip failure. We demonstrate that the rheology of the granular material, imposed as fault boundary condition, is dynamically consistent. Indeed, it is able to reproduce the basic features of a crustal earthquake, spontaneously accelerating up to some terminal rupture speed, both sub– and supershear.
期刊介绍:
Annals of Geophysics is an international, peer-reviewed, open-access, online journal. Annals of Geophysics welcomes contributions on primary research on Seismology, Geodesy, Volcanology, Physics and Chemistry of the Earth, Oceanography and Climatology, Geomagnetism and Paleomagnetism, Geodynamics and Tectonophysics, Physics and Chemistry of the Atmosphere.
It provides:
-Open-access, freely accessible online (authors retain copyright)
-Fast publication times
-Peer review by expert, practicing researchers
-Free of charge publication
-Post-publication tools to indicate quality and impact
-Worldwide media coverage.
Annals of Geophysics is published by Istituto Nazionale di Geofisica e Vulcanologia (INGV), nonprofit public research institution.