F. Tshabuse, N. Buthelezi, AM Folami, L. Donnelly, FM Swalaha
{"title":"Rapid detection of drug-resistant Escherichia coli by Vitek 2 compact system","authors":"F. Tshabuse, N. Buthelezi, AM Folami, L. Donnelly, FM Swalaha","doi":"10.17159/wsa/2022.v48.i4.3941","DOIUrl":null,"url":null,"abstract":"Sewage treatment facilities aim to reduce biological contaminants such as pathogenic bacteria, fungi, protozoa, and viruses in wastewaters before discharging them to the receiving water bodies. However, several studies have shown the persistence of these contaminants throughout the sewage treatment process. In this study, the Vitek 2 compact system was used to detect the presence of Escherichia coli in three sewage treatment facilities located in the Pietermaritzburg urban area (South Africa), and its susceptibility to antimicrobial agents. E. coli has been recognized as an important Gram-negative rod-shaped human pathogen. The effluent and influent samples were analysed to determine the fate of E. coli and its susceptibility to 17 antimicrobial agents. The system identified the presence of drug-resistant E. coli in all of the tested samples, with the highest susceptibility being to ampicillin (33%) and trimethoprim/sulfamethoxazole (27%). The Vitek 2 compact system is a quick and powerful tool to identify antimicrobial-resistant bacteria in effluents and monitoring by this systemcan be used to prevent the outbreak of waterborne diseases.","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"26 4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2022.v48.i4.3941","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sewage treatment facilities aim to reduce biological contaminants such as pathogenic bacteria, fungi, protozoa, and viruses in wastewaters before discharging them to the receiving water bodies. However, several studies have shown the persistence of these contaminants throughout the sewage treatment process. In this study, the Vitek 2 compact system was used to detect the presence of Escherichia coli in three sewage treatment facilities located in the Pietermaritzburg urban area (South Africa), and its susceptibility to antimicrobial agents. E. coli has been recognized as an important Gram-negative rod-shaped human pathogen. The effluent and influent samples were analysed to determine the fate of E. coli and its susceptibility to 17 antimicrobial agents. The system identified the presence of drug-resistant E. coli in all of the tested samples, with the highest susceptibility being to ampicillin (33%) and trimethoprim/sulfamethoxazole (27%). The Vitek 2 compact system is a quick and powerful tool to identify antimicrobial-resistant bacteria in effluents and monitoring by this systemcan be used to prevent the outbreak of waterborne diseases.
期刊介绍:
WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc.
Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).