{"title":"Video-Based Person Re-Identification With Unregulated Sequences","authors":"Wenjun Huang, Chao Liang, Chunxia Xiao, Zhen Han","doi":"10.4018/ijdcf.2020040104","DOIUrl":null,"url":null,"abstract":"Video-based person re-identification (re-id) has recently attracted widespread attentions because extra space-time information and more appearance cues in videos can be used to improve the performance of image-based person re-id. Most existing approaches equally treat person video images, ignoring their individual discrepancy. However, in real scenarios, captured images are usually contaminated by various noises, especially occlusions, resulting in a series of unregulated sequences. Through investigating the impact of unregulated sequences to feature representation of video-based person re-id, the authors find a remarkable promotion by eliminating noisy sub sequences. Based on this interesting finding, an adaptive unregulated sub sequence detection and refinement method is proposed to purify original video sequence and obtain a more effective and discriminative feature representation for video-based person re-id. Experimental results on two public datasets demonstrate that the proposed method outperforms the state-of-the-art work.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"19 1","pages":"59-76"},"PeriodicalIF":0.6000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.2020040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Video-based person re-identification (re-id) has recently attracted widespread attentions because extra space-time information and more appearance cues in videos can be used to improve the performance of image-based person re-id. Most existing approaches equally treat person video images, ignoring their individual discrepancy. However, in real scenarios, captured images are usually contaminated by various noises, especially occlusions, resulting in a series of unregulated sequences. Through investigating the impact of unregulated sequences to feature representation of video-based person re-id, the authors find a remarkable promotion by eliminating noisy sub sequences. Based on this interesting finding, an adaptive unregulated sub sequence detection and refinement method is proposed to purify original video sequence and obtain a more effective and discriminative feature representation for video-based person re-id. Experimental results on two public datasets demonstrate that the proposed method outperforms the state-of-the-art work.