New directions in predicting bank failures: The case of small banks

Frederick D. Crowley, Anthony L. Loviscek
{"title":"New directions in predicting bank failures: The case of small banks","authors":"Frederick D. Crowley,&nbsp;Anthony L. Loviscek","doi":"10.1016/1042-752X(90)90011-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper uses five financial accounting ratios with three alternative loan-portfolio diversification measures to classify failures among small commercial banks that occurred during 1984. Classifications for one, two and three years before failure are performed using linear probability, logit, probit, and discriminant analysis models. Validation is done through the U-Method. The results indicate that the logit and probit functional forms may offer an advantage over the more frequently used discriminant analysis. U-Method classification accuracy is approximately 86 percent for the logit and probit models.</p></div>","PeriodicalId":100963,"journal":{"name":"North American Review of Economics and Finance","volume":"1 1","pages":"Pages 145-162"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1042-752X(90)90011-4","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Review of Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/1042752X90900114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper uses five financial accounting ratios with three alternative loan-portfolio diversification measures to classify failures among small commercial banks that occurred during 1984. Classifications for one, two and three years before failure are performed using linear probability, logit, probit, and discriminant analysis models. Validation is done through the U-Method. The results indicate that the logit and probit functional forms may offer an advantage over the more frequently used discriminant analysis. U-Method classification accuracy is approximately 86 percent for the logit and probit models.

预测银行倒闭的新方向:以小银行为例
本文采用五种财务会计比率和三种不同的贷款组合多样化措施对1984年发生的小型商业银行破产进行分类。使用线性概率、logit、probit和判别分析模型进行故障前1、2和3年的分类。验证是通过U-Method完成的。结果表明,logit和probit函数形式可能比更常用的判别分析提供优势。对于logit和probit模型,U-Method的分类准确率约为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信