Design and application of a novel and effective ligand for the Cu-catalyzed amination of aryl halides in water

IF 5.8 3区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lifang Wang, Xinhai Zhu, Zexuan Liang, Manna Huang, Y. Wan
{"title":"Design and application of a novel and effective ligand for the Cu-catalyzed amination of aryl halides in water","authors":"Lifang Wang, Xinhai Zhu, Zexuan Liang, Manna Huang, Y. Wan","doi":"10.1080/17518253.2022.2147027","DOIUrl":null,"url":null,"abstract":"ABSTRACT An effective ligand for the Ullmann-type C–N coupling reaction in water has been obtained using a novel tactic, namely, introducing a third group into the ligand to both improve the ligand’s water solubility and enhance the ligand’s coordinating ability. Applying this method, we have developed an effective ligand for the Cu-catalyzed amination of aryl halides, in particular, for aryl chlorides in water. The substrate diversity of the catalyst system, relatively less time required (6–12 h), and water as the reaction solvent make it attractive in both academia and industry. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"1 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Letters and Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/17518253.2022.2147027","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT An effective ligand for the Ullmann-type C–N coupling reaction in water has been obtained using a novel tactic, namely, introducing a third group into the ligand to both improve the ligand’s water solubility and enhance the ligand’s coordinating ability. Applying this method, we have developed an effective ligand for the Cu-catalyzed amination of aryl halides, in particular, for aryl chlorides in water. The substrate diversity of the catalyst system, relatively less time required (6–12 h), and water as the reaction solvent make it attractive in both academia and industry. GRAPHICAL ABSTRACT
一种新型有效的铜催化卤化物胺化配体的设计与应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemistry Letters and Reviews
Green Chemistry Letters and Reviews CHEMISTRY, MULTIDISCIPLINARY-GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
CiteScore
9.10
自引率
3.00%
发文量
48
期刊介绍: Green Chemistry Letters and Reviews is an Open Access, peer-reviewed journal focused on rapid publication of innovative new syntheses and procedures that reduce or eliminate the use and generation of hazardous materials. Reviews of state-of-the-art green chemistry technologies are also included within the journal''s scope. Green Chemistry Letters and Reviews is divided into three overlapping topic areas: research, education, and industrial implementation. The journal publishes both letters, which concisely communicate the most time-sensitive results, and reviews, which aid researchers in understanding the state of science on important green chemistry topics. Submissions are encouraged which apply the 12 principles of green chemistry to: -Green Chemistry Education- Synthetic Reaction Pathways- Research and Process Analytical Techniques- Separation and Purification Technologies- Renewable Feedstocks- Degradable Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信