Motion Planning and Tracking Trajectory of an Autonomous Emergency Braking Pedestrian (AEB-P) System Based on Different Brake Pad Friction Coefficients on Dry Road Surface
A. Zulkifli, M. H. Peeie, M. A. Zakaria, M. I. Ishak, M.A. Shahrom, B. Kujunni
{"title":"Motion Planning and Tracking Trajectory of an Autonomous Emergency Braking Pedestrian (AEB-P) System Based on Different Brake Pad Friction Coefficients on Dry Road Surface","authors":"A. Zulkifli, M. H. Peeie, M. A. Zakaria, M. I. Ishak, M.A. Shahrom, B. Kujunni","doi":"10.15282/ijame.19.3.2022.12.0772","DOIUrl":null,"url":null,"abstract":"Accidents between vehicles and pedestrians usually occur when a pedestrian is crossing the road. An Autonomous Emergency Braking Pedestrian (AEB-P) is introduced to prevent collisions between vehicles and pedestrians. However, the performance of an AEB-P will be reduced when the brake pad is worn out on a dry road. In this study, the motion planning, namely Vehicle Conditional Artificial Potential Field (VC-APF), including a warning signal and emergency brake phase that generate the vehicle’s deceleration, is proposed to analyze the effect of brake pad on the AEB-P performance. Then, the vehicle’s deceleration is tracked by the tracking trajectory, where the PI controller is adapted to provide the optimum braking force. The function of PI control is to ensure the vehicle’s deceleration is approaching the desired deceleration. The performance of the proposed method has been simulated on the dry road surface with different brake pad coefficients; 0.4, 0.35, and 0.24. The simulation results show that the vehicle manages to stop colliding with a pedestrian on the dry road surface at the minimum safety distance range of 2.7-2.9 meters.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.3.2022.12.0772","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Accidents between vehicles and pedestrians usually occur when a pedestrian is crossing the road. An Autonomous Emergency Braking Pedestrian (AEB-P) is introduced to prevent collisions between vehicles and pedestrians. However, the performance of an AEB-P will be reduced when the brake pad is worn out on a dry road. In this study, the motion planning, namely Vehicle Conditional Artificial Potential Field (VC-APF), including a warning signal and emergency brake phase that generate the vehicle’s deceleration, is proposed to analyze the effect of brake pad on the AEB-P performance. Then, the vehicle’s deceleration is tracked by the tracking trajectory, where the PI controller is adapted to provide the optimum braking force. The function of PI control is to ensure the vehicle’s deceleration is approaching the desired deceleration. The performance of the proposed method has been simulated on the dry road surface with different brake pad coefficients; 0.4, 0.35, and 0.24. The simulation results show that the vehicle manages to stop colliding with a pedestrian on the dry road surface at the minimum safety distance range of 2.7-2.9 meters.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.