Albrecht Schmidt, Carla Henning, Swetlana Herbrandt, Carsten Könke, Katja Ickstadt, Tim Ricken, Tom Lahmer
{"title":"Numerical studies of earth structure assessment via the theory of porous media using fuzzy probability based random field material descriptions","authors":"Albrecht Schmidt, Carla Henning, Swetlana Herbrandt, Carsten Könke, Katja Ickstadt, Tim Ricken, Tom Lahmer","doi":"10.1002/gamm.201900007","DOIUrl":null,"url":null,"abstract":"<p>To account for the natural variability of material parameters in multiphasic and hydro-mechanical coupled finite element analyses of soil and earth structure applications, the use of probabilistic methods may be effective. Here, selecting the appropriate soil auto-correlation functions for random field realizations plays an essential role. In a joint study, the general influence of auto-correlation lengths on the results of strongly coupled models is determined. Subsequently, a polymorphic approach using fuzzy probability based random fields is used to capture the solution space for fuzzy auto-correlation lengths. To adequately describe the behavior of the soil the theory of porous media is implemented, which uses a homogenization approach for the multiple phases on the soil microstructure. Its foundations and the differentiated methods used for the polymorphic uncertainty quantification are explained in this contribution. Based on two representative examples, the requirements and advantages of a polymorphic uncertainty model are worked out30.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.201900007","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.201900007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11
Abstract
To account for the natural variability of material parameters in multiphasic and hydro-mechanical coupled finite element analyses of soil and earth structure applications, the use of probabilistic methods may be effective. Here, selecting the appropriate soil auto-correlation functions for random field realizations plays an essential role. In a joint study, the general influence of auto-correlation lengths on the results of strongly coupled models is determined. Subsequently, a polymorphic approach using fuzzy probability based random fields is used to capture the solution space for fuzzy auto-correlation lengths. To adequately describe the behavior of the soil the theory of porous media is implemented, which uses a homogenization approach for the multiple phases on the soil microstructure. Its foundations and the differentiated methods used for the polymorphic uncertainty quantification are explained in this contribution. Based on two representative examples, the requirements and advantages of a polymorphic uncertainty model are worked out30.