{"title":"Interaction of Mycobacterium tuberculosis H37Rv with Microfold Cell leads to a New Era of infection in Host","authors":"S. Meena, Shivangi, L. Meena","doi":"10.21767/2386-5180.100246","DOIUrl":null,"url":null,"abstract":"Tuberculosis (TB) is widely distributed dangerous disease that spreads at faster rate and caused by Mycobacterium tuberculosis H37Rv (M. tuberculosis H37Rv) which is highly successful lipid and GC rich bacteria. The bacterium gains its success as it utilizes host macrophages for its survival and replication. M. tuberculosis H37Rv uses at least two separate pathways to recruit macrophages. It uses its PGL surface lipid to recruit macrophages through host CCL2 and Micro fold cells to enter deep in tissues. M-cells express many different carbohydrate markers on their surface which helps in cell and pathogen or antigen interaction. These cells transfer substances from gut across epithelium and to immune cells. M-cells have the potential to intricate the life cycle of this pathogen by internalizing pathogen. M-cells are targeted for vaccine to induce immunity and it has experimented on mice, humans and primates. Nanoparticles and microspheres can also be used successfully for drug or vaccine delivery through micro fold cells because microspheres used for vaccine delivery system to increase mucosal antibody responses that provide prolonged therapeutic effects and nanoparticles are easily accepted by cells so these particles also useful in drug delivery. In this manuscript we have describe the significance of M- cells that could be helpful in TB treatment.","PeriodicalId":8195,"journal":{"name":"Annals of Clinical and Laboratory Research","volume":"298 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical and Laboratory Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21767/2386-5180.100246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Tuberculosis (TB) is widely distributed dangerous disease that spreads at faster rate and caused by Mycobacterium tuberculosis H37Rv (M. tuberculosis H37Rv) which is highly successful lipid and GC rich bacteria. The bacterium gains its success as it utilizes host macrophages for its survival and replication. M. tuberculosis H37Rv uses at least two separate pathways to recruit macrophages. It uses its PGL surface lipid to recruit macrophages through host CCL2 and Micro fold cells to enter deep in tissues. M-cells express many different carbohydrate markers on their surface which helps in cell and pathogen or antigen interaction. These cells transfer substances from gut across epithelium and to immune cells. M-cells have the potential to intricate the life cycle of this pathogen by internalizing pathogen. M-cells are targeted for vaccine to induce immunity and it has experimented on mice, humans and primates. Nanoparticles and microspheres can also be used successfully for drug or vaccine delivery through micro fold cells because microspheres used for vaccine delivery system to increase mucosal antibody responses that provide prolonged therapeutic effects and nanoparticles are easily accepted by cells so these particles also useful in drug delivery. In this manuscript we have describe the significance of M- cells that could be helpful in TB treatment.