{"title":"Transduction of compressive stress by bronchial epithelium","authors":"D. Tschumperlin, J. Drazen","doi":"10.1109/IEMBS.2002.1136994","DOIUrl":null,"url":null,"abstract":"The epithelial lining of the asthmatic airway is exposed to compressive stress as a consequence of smooth muscle constriction. We have shown previously that in vitro compression of bronchial epithelial cells stimulates extracellular signal-regulated kinase (ERK) phosphorylation and downstream gene expression. Here we show that inhibition of signaling through the epidermal growth factor receptor (EGFR) with a tyrosine kinase inhibitor (AG1478) or a neutralizing antibody to the ligand-binding domain of the EGFR blocks compression-induced ERK phosphorylation. A metalloprotease inhibitor (Galardin) and a neutralizing antibody to heparin binding epidermal growth factor (HB-EGF), but not EGF, also attenuates the compression-induced ERK activation. Our results demonstrate that compressive activation of the ERK signaling pathway requires signaling through the EGFR, and involves metalloprotease-dependent shedding of HB-EGF.","PeriodicalId":60385,"journal":{"name":"中国地球物理学会年刊","volume":"135 2 1","pages":"641-642 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国地球物理学会年刊","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/IEMBS.2002.1136994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The epithelial lining of the asthmatic airway is exposed to compressive stress as a consequence of smooth muscle constriction. We have shown previously that in vitro compression of bronchial epithelial cells stimulates extracellular signal-regulated kinase (ERK) phosphorylation and downstream gene expression. Here we show that inhibition of signaling through the epidermal growth factor receptor (EGFR) with a tyrosine kinase inhibitor (AG1478) or a neutralizing antibody to the ligand-binding domain of the EGFR blocks compression-induced ERK phosphorylation. A metalloprotease inhibitor (Galardin) and a neutralizing antibody to heparin binding epidermal growth factor (HB-EGF), but not EGF, also attenuates the compression-induced ERK activation. Our results demonstrate that compressive activation of the ERK signaling pathway requires signaling through the EGFR, and involves metalloprotease-dependent shedding of HB-EGF.