Generalized solutions to degenerate dynamical systems

IF 0.5 4区 数学 Q3 MATHEMATICS
P. Jouan, U. Serres
{"title":"Generalized solutions to degenerate dynamical systems","authors":"P. Jouan, U. Serres","doi":"10.1063/5.0144432","DOIUrl":null,"url":null,"abstract":"The solutions to degenerate dynamical systems of the form A(x)ẋ=f(x) are studied by considering the equation as a differential inclusion. The set Z={det(A(x))=0}, called the singular set, is assumed to have an empty interior. The reasons leading us to the definition of the sets used for differential inclusion are exposed in detail. This definition is then applied on the one hand to generic cases and on the other hand to the particular cases resulting from physics, which can be found in Saavedra, Troncoso, and Zanelli [J. Math. Phys. 42, 4383 (2001)]. It is shown that generalized solutions may enter, leave, or remain in the singular locus.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"38 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0144432","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The solutions to degenerate dynamical systems of the form A(x)ẋ=f(x) are studied by considering the equation as a differential inclusion. The set Z={det(A(x))=0}, called the singular set, is assumed to have an empty interior. The reasons leading us to the definition of the sets used for differential inclusion are exposed in detail. This definition is then applied on the one hand to generic cases and on the other hand to the particular cases resulting from physics, which can be found in Saavedra, Troncoso, and Zanelli [J. Math. Phys. 42, 4383 (2001)]. It is shown that generalized solutions may enter, leave, or remain in the singular locus.
退化动力系统的广义解
将退化动力系统A(x) =f(x)视为微分包含,研究了退化动力系统的解。集合Z={det(A(x))=0},称为奇异集,假定其内部为空。详细地揭示了导致我们定义用于微分包含的集合的原因。然后,这个定义一方面应用于一般情况,另一方面应用于由物理学产生的特殊情况,这些情况可以在Saavedra, Troncoso和Zanelli中找到[J]。数学。物理学报,42(2001)。证明了广义解可以进入、离开或停留在奇异轨迹上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信