Implementasi Algoritma Apriori Pada Data Benchmark Kosarak Dan Mushrooms

Pub Date : 2017-09-28 DOI:10.31289/JITE.V1I1.572
R. Muliono
{"title":"Implementasi Algoritma Apriori Pada Data Benchmark Kosarak Dan Mushrooms","authors":"R. Muliono","doi":"10.31289/JITE.V1I1.572","DOIUrl":null,"url":null,"abstract":"Algoritma apriori saat ini lebih banyak digunakan untuk mencari frequent itemsets dan mencari aturan asosiasi untuk menemukan knowledge. Proses mencari frequent itemsets pada data secara berulang-ulang yang ada didalam database dan diakhiri ketika kandidat itemsets sampai K+1 tidak ada lagi. Algorima Apriori menggunakan secara umum menggunakan banyak jumlah memori dan waktu eksekusi dalam menemukan kombinasi dan perbandingan frequent itemsets. Hasil yang di dapatkan dengan menggunakan algoritma apriori bisa di katakan akurat saat menseleksi kombinasi itemset yang ada pada dataset sesuai dengan nilai support dan confidens nya. Untuk mengetahui seberapa akurat dan berapa jumlah sumberdaya yang di gunakan serta bagaimana perilaku algoritma apriori terhadap dataset dengan jumlah kolom data yang berbeda, maka implementasi agoritma apriori di ujikan dengan data benchmark kosarak.dat dan mushrooms.dat dengan nilai minimum support yang sama. Kedua data sets tersebut memiliki format yang berbeda pada jumlah kolom datanya yaitu data pada semua baris memiliki jumlah kolom karakter data, pada datasets kosarak.datmemiliki kolom karakter dengan panjang berbeda-beda pada setiap barisnya sedangkan pada datasets mushrooms.dat memiliki kolom karakter sebanyak 23 karakter data, artinya datasets tersebut memiliki model blok data linear atau sama. Hasil dari implementasi algoritma apriori terhadap kedua datasets tersebut didapatkan perilaku proses pada apriori yang ditampilkan dari hasil waktu eksekusi dan memori yang dipakai bahwa datasets kosarak lebih sedikit menggunakan waktu dibandingkan dengan datasets mushrooms namun penggunaan memori lebih boros, semakin kecil nilai minimum support semakin banyak komparasi kandidat yang dicari. Kata Kunci : apriori; datamining ; implementasi; kosarak; mushrooms","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31289/JITE.V1I1.572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Algoritma apriori saat ini lebih banyak digunakan untuk mencari frequent itemsets dan mencari aturan asosiasi untuk menemukan knowledge. Proses mencari frequent itemsets pada data secara berulang-ulang yang ada didalam database dan diakhiri ketika kandidat itemsets sampai K+1 tidak ada lagi. Algorima Apriori menggunakan secara umum menggunakan banyak jumlah memori dan waktu eksekusi dalam menemukan kombinasi dan perbandingan frequent itemsets. Hasil yang di dapatkan dengan menggunakan algoritma apriori bisa di katakan akurat saat menseleksi kombinasi itemset yang ada pada dataset sesuai dengan nilai support dan confidens nya. Untuk mengetahui seberapa akurat dan berapa jumlah sumberdaya yang di gunakan serta bagaimana perilaku algoritma apriori terhadap dataset dengan jumlah kolom data yang berbeda, maka implementasi agoritma apriori di ujikan dengan data benchmark kosarak.dat dan mushrooms.dat dengan nilai minimum support yang sama. Kedua data sets tersebut memiliki format yang berbeda pada jumlah kolom datanya yaitu data pada semua baris memiliki jumlah kolom karakter data, pada datasets kosarak.datmemiliki kolom karakter dengan panjang berbeda-beda pada setiap barisnya sedangkan pada datasets mushrooms.dat memiliki kolom karakter sebanyak 23 karakter data, artinya datasets tersebut memiliki model blok data linear atau sama. Hasil dari implementasi algoritma apriori terhadap kedua datasets tersebut didapatkan perilaku proses pada apriori yang ditampilkan dari hasil waktu eksekusi dan memori yang dipakai bahwa datasets kosarak lebih sedikit menggunakan waktu dibandingkan dengan datasets mushrooms namun penggunaan memori lebih boros, semakin kecil nilai minimum support semakin banyak komparasi kandidat yang dicari. Kata Kunci : apriori; datamining ; implementasi; kosarak; mushrooms
分享
查看原文
现在,杏算法更多地用于查找常听器项,并查找查找知识知识的协会规则。在数据库中反复搜索频率itemsets的进程,并在候选人的itemsets到K+1的重复出现时终止。四月算法一般使用大量的内存和执行时间来定位频率和频率比较。使用四月算法可以准确地预测,将数据集中可用的数量组合与支持值和confises相匹配。要了解使用的资源的准确程度和数量,以及四月的行为算法如何处理不同数据列数的数据,然后将四月的agoritma实现与benchmark kosarak数据、dat和mushrooms数据相匹配。这两个sets数据在数据栏的数量上都有不同的格式,即所有行中的数据在数据集中都有数据字符的数量。dat有一个由23个数据组成的字符列,这意味着数据集有线性或相同的数据块模型。apriori算法实现的结果显示这两个datasets行为获得的apriori过程的执行时间和记忆的时尚潮流,datasets kosarak较少使用datasets蘑菇相比,但内存使用更长的时间比较奢侈,最小值越小的支持越来越多的被通缉的候选人。关键词:杏;datamining;实施;kosarak;蘑菇
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信