Pengsen Lin, Xiaoxiao Ji, Luqiao Yin, Jianhua Zhang
{"title":"Computational Analysis of Quantum Dots as Color Conversion Layer for Micro-LED Applications","authors":"Pengsen Lin, Xiaoxiao Ji, Luqiao Yin, Jianhua Zhang","doi":"10.1109/SSLChinaIFWS54608.2021.9675159","DOIUrl":null,"url":null,"abstract":"We propose a simulation scheme for studying quantum dot (QD) light effects of full-color micro-light-emitting-diode (micro-LED) arrays. We have studied the influence of QD thickness and concentration on light efficiency. The results show that the QD concentration and thickness have an impact on the light efficiency. When the thickness of the QD is 5 µm, or the maximum light conversion efficiency can be obtained when the concentration is 0.1 mol/L. By analyzing the light field distribution of different QD thicknesses, the light crosstalk phenomenon is observed. This kind of crosstalk can cause blurry display images and should be avoided.","PeriodicalId":6816,"journal":{"name":"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)","volume":"127 2 1","pages":"154-157"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSLChinaIFWS54608.2021.9675159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a simulation scheme for studying quantum dot (QD) light effects of full-color micro-light-emitting-diode (micro-LED) arrays. We have studied the influence of QD thickness and concentration on light efficiency. The results show that the QD concentration and thickness have an impact on the light efficiency. When the thickness of the QD is 5 µm, or the maximum light conversion efficiency can be obtained when the concentration is 0.1 mol/L. By analyzing the light field distribution of different QD thicknesses, the light crosstalk phenomenon is observed. This kind of crosstalk can cause blurry display images and should be avoided.