Sticking Fault Detecting Method for CARIMA Model

IF 0.3 Q4 ROBOTICS
T. Tanikawa, Henmi Tomohiro
{"title":"Sticking Fault Detecting Method for CARIMA Model","authors":"T. Tanikawa, Henmi Tomohiro","doi":"10.5954/ICAROB.2018.OS3-7","DOIUrl":null,"url":null,"abstract":"If a system with a fault continues to be operated, it can cause a serious accident or a considerable damage. Thus, it is important to detect faults and compensate them, and many fault detection methods have been proposed [1,2]. The advantage of fault detection is that the safety is improved, you can cope with the fault more promptly, and sometimes the system can be controlled compensating the fault. There are two kinds in fault detection, signal-based detection and model-based one. The signal-based detection is for example a method using spectral analysis, statistical signal analysis or pattern recognition, while the modelbased detection uses an observer or a parameter estimation [3]. In modelbased detection, a general method detecting additive faults is proposed by Isermann [4].","PeriodicalId":43148,"journal":{"name":"Journal of Robotics Networking and Artificial Life","volume":"64 1","pages":"149-152"},"PeriodicalIF":0.3000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics Networking and Artificial Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5954/ICAROB.2018.OS3-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

If a system with a fault continues to be operated, it can cause a serious accident or a considerable damage. Thus, it is important to detect faults and compensate them, and many fault detection methods have been proposed [1,2]. The advantage of fault detection is that the safety is improved, you can cope with the fault more promptly, and sometimes the system can be controlled compensating the fault. There are two kinds in fault detection, signal-based detection and model-based one. The signal-based detection is for example a method using spectral analysis, statistical signal analysis or pattern recognition, while the modelbased detection uses an observer or a parameter estimation [3]. In modelbased detection, a general method detecting additive faults is proposed by Isermann [4].
CARIMA模型的粘着故障检测方法
如果有故障的系统继续运行,可能会导致严重的事故或相当大的损害。因此,对故障进行检测和补偿非常重要,已经提出了许多故障检测方法[1,2]。故障检测的优点是提高了安全性,可以更及时地处理故障,有时还可以控制系统对故障进行补偿。故障检测分为基于信号的检测和基于模型的检测两种。例如,基于信号的检测是一种使用频谱分析、统计信号分析或模式识别的方法,而基于模型的检测使用观测器或参数估计[3]。在基于模型的检测中,Isermann[4]提出了一种检测加性故障的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信