Application of the optimal homotopy asymptotic method for solving a strongly nonlinear oscillatory system

A. Golbabai , M. Fardi , K. Sayevand
{"title":"Application of the optimal homotopy asymptotic method for solving a strongly nonlinear oscillatory system","authors":"A. Golbabai ,&nbsp;M. Fardi ,&nbsp;K. Sayevand","doi":"10.1016/j.mcm.2011.12.027","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the optimal homotopy asymptotic method (OHAM) and the traditional homotopy analysis method (HAM) are used to obtain analytical solution for a strongly nonlinear oscillation. Moreover, the homotopy-pade technique is employed to accelerate the convergence of solution series of traditional HAM. Results show that the second-order approximation by the OHAM is quick convergence and more accurate than the high-order of approximation by the homotopy-pade technique.</p></div>","PeriodicalId":49872,"journal":{"name":"Mathematical and Computer Modelling","volume":"58 11","pages":"Pages 1837-1843"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mcm.2011.12.027","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895717711007904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this paper, the optimal homotopy asymptotic method (OHAM) and the traditional homotopy analysis method (HAM) are used to obtain analytical solution for a strongly nonlinear oscillation. Moreover, the homotopy-pade technique is employed to accelerate the convergence of solution series of traditional HAM. Results show that the second-order approximation by the OHAM is quick convergence and more accurate than the high-order of approximation by the homotopy-pade technique.

最优同伦渐近方法在求解强非线性振荡系统中的应用
利用最优同伦渐近方法和传统的同伦分析方法,得到了一类强非线性振动问题的解析解。此外,利用同伦页技术加快了传统HAM解序列的收敛速度。结果表明,二阶近似比同伦页法的高阶近似收敛速度快,精度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical and Computer Modelling
Mathematical and Computer Modelling 数学-计算机:跨学科应用
自引率
0.00%
发文量
0
审稿时长
9.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信