A Methodology to Improve Linearity of Analog RRAM for Neuromorphic Computing

Wei Wu, Huaqiang Wu, B. Gao, Peng Yao, Xiaodong Zhang, Xiaochen Peng, Shimeng Yu, H. Qian
{"title":"A Methodology to Improve Linearity of Analog RRAM for Neuromorphic Computing","authors":"Wei Wu, Huaqiang Wu, B. Gao, Peng Yao, Xiaodong Zhang, Xiaochen Peng, Shimeng Yu, H. Qian","doi":"10.1109/VLSIT.2018.8510690","DOIUrl":null,"url":null,"abstract":"The conductance tuning linearity is an important parameter of analog RRAM for neuromorphic computing. This work presents a novel methodology to improve the conductance tuning linearity of the filamentary RRAM. An electro-thermal modulation layer is designed and introduced to control the distribution of electric field and temperature in the filament region. For the first time, a HfOx based RRAM is demonstrated with linear analog SET, linear analog RESET, 50ns speed, 10× analog tuning window, 100kΩ on-state resistance, and high temperature retention for multilevel states. The excellent performances of the analog RRAM devices enable high accuracy online learning in a neural network.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"17 1","pages":"103-104"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

Abstract

The conductance tuning linearity is an important parameter of analog RRAM for neuromorphic computing. This work presents a novel methodology to improve the conductance tuning linearity of the filamentary RRAM. An electro-thermal modulation layer is designed and introduced to control the distribution of electric field and temperature in the filament region. For the first time, a HfOx based RRAM is demonstrated with linear analog SET, linear analog RESET, 50ns speed, 10× analog tuning window, 100kΩ on-state resistance, and high temperature retention for multilevel states. The excellent performances of the analog RRAM devices enable high accuracy online learning in a neural network.
一种提高神经形态计算模拟随机存储器线性度的方法
电导调谐线性度是模拟随机存储器用于神经形态计算的一个重要参数。本文提出了一种新的方法来提高丝状RRAM的电导调谐线性度。设计并引入了电热调制层来控制灯丝区电场和温度的分布。首次展示了基于HfOx的RRAM具有线性模拟SET,线性模拟RESET, 50ns速度,10倍模拟调谐窗口,100kΩ导通电阻和多电平状态的高温保持。模拟RRAM器件的优异性能使神经网络能够实现高精度的在线学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信